Prior studies on Aspect-level Sentiment Classification (ALSC) emphasize modeling interrelationships among aspects and contexts but overlook the crucial role of aspects themselves as essential domain knowledge. To this end, we propose AGCL, a novel Aspect Graph Construction and Learning method, aimed at furnishing the model with finely tuned aspect information to bolster its task-understanding ability. AGCL’s pivotal innovations reside in Aspect Graph Construction (AGC) and Aspect Graph Learning (AGL), where AGC harnesses intrinsic aspect connections to construct the domain aspect graph, and then AGL iteratively updates the introduced aspect graph to enhance its domain expertise, making it more suitable for the ALSC task. Hence, this domain aspect graph can serve as a bridge connecting unseen aspects with seen aspects, thereby enhancing the model’s generalization capability. Experiment results on three widely used datasets demonstrate the significance of aspect information for ALSC and highlight AGL’s superiority in aspect learning, surpassing state-of-the-art baselines greatly. Code is available at https://github.com/jian-projects/agcl.
In an emotional conversation, emotions are causally transmitted among communication participants, constituting a fundamental conversational feature that can facilitate the comprehension of intricate changes in emotional states during the conversation and contribute to neutralizing emotional semantic bias in utterance caused by the absence of modality information. Therefore, emotional transition (ET) plays a crucial role in the task of Emotion Recognition in Conversation (ERC) that has not received sufficient attention in current research. In light of this, an Emotional Transition-based Emotion Recognizer (EmoTrans) is proposed in this paper. Specifically, we concatenate the most recent utterances with their corresponding speakers to construct the model input, known as samples, each with several placeholders to implicitly express the emotions of contextual utterances. Based on these placeholders, two components are developed to make the model sensitive to emotions and effectively capture the ET features in the sample. Furthermore, an ET-based Contrastive Learning (CL) is developed to compact the representation space, making the model achieve more robust sample representations. We conducted exhaustive experiments on four widely used datasets and obtained competitive experimental results, especially, new state-of-the-art results obtained on MELD and IEMOCAP, demonstrating the superiority of EmoTrans.
Due to the great potential in facilitating software development, code generation has attracted increasing attention recently. Generally, dominant models are Seq2Tree models, which convert the input natural language description into a sequence of tree-construction actions corresponding to the pre-order traversal of an Abstract Syntax Tree (AST). However, such a traversal order may not be suitable for handling all multi-branch nodes. In this paper, we propose to equip the Seq2Tree model with a context-based Branch Selector, which is able to dynamically determine optimal expansion orders of branches for multi-branch nodes. Particularly, since the selection of expansion orders is a non-differentiable multi-step operation, we optimize the selector through reinforcement learning, and formulate the reward function as the difference of model losses obtained through different expansion orders. Experimental results and in-depth analysis on several commonly-used datasets demonstrate the effectiveness and generality of our approach. We have released our code at
https://github.com/DeepLearnXMU/CG-RL.