Sai Koneru


2024

pdf bib
Assessing the Effectiveness of GPT-4o in Climate Change Evidence Synthesis and Systematic Assessments: Preliminary Insights
Elphin Joe | Sai Koneru | Christine Kirchhoff
Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024)

In this research short, we examine the potential of using GPT-4o, a state-of-the-art large language model (LLM) to undertake evidence synthesis and systematic assessment tasks. Traditional workflows for such tasks involve large groups of domain experts who manually review and synthesize vast amounts of literature. The exponential growth of scientific literature and recent advances in LLMs provide an opportunity to complementing these traditional workflows with new age tools. We assess the efficacy of GPT-4o to do these tasks on a sample from the dataset created by the Global Adaptation Mapping Initiative (GAMI) where we check the accuracy of climate change adaptation related feature extraction from the scientific literature across three levels of expertise. Our results indicate that while GPT-4o can achieve high accuracy in low-expertise tasks like geographic location identification, their performance in intermediate and high-expertise tasks, such as stakeholder identification and assessment of depth of the adaptation response, is less reliable. The findings motivate the need for designing assessment workflows that utilize the strengths of models like GPT-4o while also providing refinements to improve their performance on these tasks.

pdf bib
Blending LLMs into Cascaded Speech Translation: KIT’s Offline Speech Translation System for IWSLT 2024
Sai Koneru | Thai Binh Nguyen | Ngoc-Quan Pham | Danni Liu | Zhaolin Li | Alexander Waibel | Jan Niehues
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

Large Language Models (LLMs) are currently under exploration for various tasks, including Automatic Speech Recognition (ASR), Machine Translation (MT), and even End-to-End Speech Translation (ST). In this paper, we present KIT’s offline submission in the constrained + LLM track by incorporating recently proposed techniques that can be added to any cascaded speech translation. Specifically, we integrate Mistral-7B into our system to enhance it in two ways. Firstly, we refine the ASR outputs by utilizing the N-best lists generated by our system and fine-tuning the LLM to predict the transcript accurately. Secondly, we refine the MT outputs at the document level by fine-tuning the LLM, leveraging both ASR and MT predictions to improve translation quality. We find that integrating the LLM into the ASR and MT systems results in an absolute improvement of 0.3% in Word Error Rate and 0.65% in COMET for tst2019 test set. In challenging test sets with overlapping speakers and background noise, we find that integrating LLM is not beneficial due to poor ASR performance. Here, we use ASR with chunked long-form decoding to improve context usage that may be unavailable when transcribing with Voice Activity Detection segmentation alone.

pdf bib
The KIT Speech Translation Systems for IWSLT 2024 Dialectal and Low-resource Track
Zhaolin Li | Enes Yavuz Ugan | Danni Liu | Carlos Mullov | Tu Anh Dinh | Sai Koneru | Alexander Waibel | Jan Niehues
Proceedings of the 21st International Conference on Spoken Language Translation (IWSLT 2024)

This paper presents KIT’s submissions to the IWSLT 2024 dialectal and low-resource track. In this work, we build systems for translating into English from speech in Maltese, Bemba, and two Arabic dialects Tunisian and North Levantine. Under the unconstrained condition, we leverage the pre-trained multilingual models by fine-tuning them for the target language pairs to address data scarcity problems in this track. We build cascaded and end-to-end speech translation systems for different language pairs and show the cascaded system brings slightly better overall performance. Besides, we find utilizing additional data resources boosts speech recognition performance but slightly harms machine translation performance in cascaded systems. Lastly, we show that Minimum Bayes Risk is effective in improving speech translation performance by combining the cascaded and end-to-end systems, bringing a consistent improvement of around 1 BLUE point.

pdf bib
Can Large Language Models Discern Evidence for Scientific Hypotheses? Case Studies in the Social Sciences
Sai Koneru | Jian Wu | Sarah Rajtmajer
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Hypothesis formulation and testing are central to empirical research. A strong hypothesis is a best guess based on existing evidence and informed by a comprehensive view of relevant literature. However, with exponential increase in the number of scientific articles published annually, manual aggregation and synthesis of evidence related to a given hypothesis is a challenge. Our work explores the ability of current large language models (LLMs) to discern evidence in support or refute of specific hypotheses based on the text of scientific abstracts. We share a novel dataset for the task of scientific hypothesis evidencing using community-driven annotations of studies in the social sciences. We compare the performance of LLMs to several state of the art methods and highlight opportunities for future research in this area. Our dataset is shared with the research community: https://github.com/Sai90000/ScientificHypothesisEvidencing.git

pdf bib
Contextual Refinement of Translations: Large Language Models for Sentence and Document-Level Post-Editing
Sai Koneru | Miriam Exel | Matthias Huck | Jan Niehues
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) have demonstrated considerable success in various natural language processing tasks, but open-source LLMs have yet to attain state-of-the-art performance in Neural Machine Translation (NMT). Nevertheless, their significant performance in tasks demanding a broad understanding and contextual processing shows their potential for translation. To exploit these abilities, we investigate using LLMs for MT and explore recent parameter-efficient fine-tuning techniques. Surprisingly, our initial experiments found that fine-tuning with Q-LoRA for translation purposes led to performance improvements in terms of BLEU but degradation in COMET compared to in-context learning. To overcome this, we propose an alternative approach: adapting LLMs as Automatic Post-Editors (APE) rather than direct translators. Building on the ability of the LLM to handle long sequences, we also propose extending our approach to document-level translation. We show that leveraging Low-Rank-Adapter fine-tuning for APE can yield significant improvements across both sentence and document-level metrics while generalizing to out-of-domain data. Most notably, we achieve a state-of-the-art accuracy rate of 88.7% on the ContraPro test set, which assesses the model’s ability to resolve pronoun ambiguities when translating from English to German. Lastly, during manual post-editing for document-level translation, the source sentences are iteratively annotated, which can be used to refine further translations in the document. Here, we demonstrate that leveraging human corrections can significantly reduce the number of edits required for subsequent translations.

pdf bib
Plug, Play, and Fuse: Zero-Shot Joint Decoding via Word-Level Re-ranking across Diverse Vocabularies
Sai Koneru | Matthias Huck | Miriam Exel | Jan Niehues
Proceedings of the Ninth Conference on Machine Translation

Recent advancements in NLP have resulted in models with specialized strengths, such as processing multimodal inputs or excelling in specific domains. However, real-world tasks, like multimodal translation, often require a combination of these strengths, such as handling both translation and image processing. While individual translation and vision models are powerful, they typically lack the ability to perform both tasks in a single system. Combining these models poses challenges, particularly due to differences in their vocabularies, which limit the effectiveness of traditional ensemble methods to post-generation techniques like N-best list re-ranking. In this work, we propose a novel zero-shot ensembling strategy that allows for the integration of different models during the decoding phase without the need for additional training. Our approach re-ranks beams during decoding by combining scores at the word level, using heuristics to predict when a word is completed. We demonstrate the effectiveness of this method in machine translation scenarios, showing that it enables the generation of translations that are both speech- and image-aware while also improving overall translation quality.

2023

pdf bib
Analyzing Challenges in Neural Machine Translation for Software Localization
Sai Koneru | Matthias Huck | Miriam Exel | Jan Niehues
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Advancements in Neural Machine Translation (NMT) greatly benefit the software localization industry by decreasing the post-editing time of human annotators. Although the volume of the software being localized is growing significantly, techniques for improving NMT for user interface (UI) texts are lacking. These UI texts have different properties than other collections of texts, presenting unique challenges for NMT. For example, they are often very short, causing them to be ambiguous and needing additional context (button, title text, a table item, etc.) for disambiguation. However, no such UI data sets are readily available with contextual information for NMT models to exploit. This work aims to provide a first step in improving UI translations and highlight its challenges. To achieve this, we provide a novel multilingual UI corpus collection (∼ 1.3M for English German) with a targeted test set and analyze the limitations of state-of-the-art methods on this challenging task. Specifically, we present a targeted test set for disambiguation from English to German to evaluate reliably and emphasize UI translation challenges. Furthermore, we evaluate several state-of-the-art NMT techniques from domain adaptation and document-level NMT on this challenging task. All the scripts to replicate the experiments and data sets are available here.ˆ,

pdf bib
End-to-End Evaluation for Low-Latency Simultaneous Speech Translation
Christian Huber | Tu Anh Dinh | Carlos Mullov | Ngoc-Quan Pham | Thai Binh Nguyen | Fabian Retkowski | Stefan Constantin | Enes Ugan | Danni Liu | Zhaolin Li | Sai Koneru | Jan Niehues | Alexander Waibel
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The challenge of low-latency speech translation has recently draw significant interest in the research community as shown by several publications and shared tasks. Therefore, it is essential to evaluate these different approaches in realistic scenarios. However, currently only specific aspects of the systems are evaluated and often it is not possible to compare different approaches. In this work, we propose the first framework to perform and evaluate the various aspects of low-latency speech translation under realistic conditions. The evaluation is carried out in an end-to-end fashion. This includes the segmentation of the audio as well as the run-time of the different components. Secondly, we compare different approaches to low-latency speech translation using this framework. We evaluate models with the option to revise the output as well as methods with fixed output. Furthermore, we directly compare state-of-the-art cascaded as well as end-to-end systems. Finally, the framework allows to automatically evaluate the translation quality as well as latency and also provides a web interface to show the low-latency model outputs to the user.

pdf bib
KIT’s Multilingual Speech Translation System for IWSLT 2023
Danni Liu | Thai Binh Nguyen | Sai Koneru | Enes Yavuz Ugan | Ngoc-Quan Pham | Tuan Nam Nguyen | Tu Anh Dinh | Carlos Mullov | Alexander Waibel | Jan Niehues
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023)

Many existing speech translation benchmarks focus on native-English speech in high-quality recording conditions, which often do not match the conditions in real-life use-cases. In this paper, we describe our speech translation system for the multilingual track of IWSLT 2023, which focuses on the translation of scientific conference talks. The test condition features accented input speech and terminology-dense contents. The tasks requires translation into 10 languages of varying amounts of resources. In absence of training data from the target domain, we use a retrieval-based approach (kNN-MT) for effective adaptation (+0.8 BLEU for speech translation). We also use adapters to easily integrate incremental training data from data augmentation, and show that it matches the performance of re-training. We observe that cascaded systems are more easily adaptable towards specific target domains, due to their separate modules. Our cascaded speech system outperforms its end-to-end counterpart on scientific talk translation, although their performance remains similar on TED talks.

2021

pdf bib
Unsupervised Machine Translation On Dravidian Languages
Sai Koneru | Danni Liu | Jan Niehues
Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages

Unsupervised Neural Machine translation (UNMT) is beneficial especially for under-resourced languages such as from the Dravidian family. They learn to translate between the source and target, relying solely on only monolingual corpora. However, UNMT systems fail in scenarios that occur often when dealing with low resource languages. Recent works have achieved state-of-the-art results by adding auxiliary parallel data with similar languages. In this work, we focus on unsupervised translation between English and Kannada by using limited amounts of auxiliary data between English and other Dravidian languages. We show that transliteration is essential in unsupervised translation between Dravidian languages, as they do not share a common writing system. We explore several model architectures that use the auxiliary data in order to maximize knowledge sharing and enable UNMT for dissimilar language pairs. We show from our experiments it is crucial for Kannada and reference languages to be similar. Further, we propose a method to measure language similarity to choose the most beneficial reference languages.