Saikat Chakraborty


2023

pdf bib
AVATAR: A Parallel Corpus for Java-Python Program Translation
Wasi Uddin Ahmad | Md Golam Rahman Tushar | Saikat Chakraborty | Kai-Wei Chang
Findings of the Association for Computational Linguistics: ACL 2023

Program translation refers to migrating source code from one programming language to another. It has tremendous practical value in software development, as porting software across languages is time-consuming and costly. Automating program translation is of paramount importance in software migration, and recently researchers explored unsupervised approaches due to the unavailability of parallel corpora. However, the availability of pre-trained language models for programming languages enables supervised fine-tuning with a small number of labeled examples. Therefore, we present AVATAR, a collection of 9,515 programming problems and their solutions written in two popular languages, Java and Python. AVATAR is collected from competitive programming sites, online platforms, and open-source repositories. Furthermore, AVATAR includes unit tests for 250 examples to facilitate functional correctness evaluation. We benchmark several pre-trained language models fine-tuned on AVATAR. Experiment results show that the models lack in generating functionally accurate code.

pdf bib
Ranking LLM-Generated Loop Invariants for Program Verification
Saikat Chakraborty | Shuvendu Lahiri | Sarah Fakhoury | Akash Lal | Madanlal Musuvathi | Aseem Rastogi | Aditya Senthilnathan | Rahul Sharma | Nikhil Swamy
Findings of the Association for Computational Linguistics: EMNLP 2023

Synthesizing inductive loop invariants is fundamental to automating program verification. In this work we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number a calls to a program verifier to establish an invariant. To address this issue, we propose a re-ranking approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier.

pdf bib
Summarize and Generate to Back-translate: Unsupervised Translation of Programming Languages
Wasi Uddin Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Back-translation is widely known for its effectiveness in neural machine translation when there is little to no parallel data. In this approach, a source-to-target model is coupled with a target-to-source model trained in parallel. The target-to-source model generates noisy sources, while the source-to-target model is trained to reconstruct the targets and vice versa. Recent developments of multilingual pre-trained sequence-to-sequence models for programming languages have been very effective for a broad spectrum of downstream software engineering tasks. Hence, training them to build programming language translation systems via back-translation is compelling. However, these models cannot be further trained via back-translation since they learn to output sequences in the same language as the inputs during pre-training. As an alternative, we propose performing back-translation via code summarization and generation. In code summarization, a model learns to generate natural language (NL) summaries given code snippets. In code generation, the model learns to do the opposite. Therefore, target-to-source generation in back-translation can be viewed as a target-to-NL-to-source generation. We show that our proposed approach performs competitively with state-of-the-art methods. We have made the code publicly available.

2022

pdf bib
Towards Learning (Dis)-Similarity of Source Code from Program Contrasts
Yangruibo Ding | Luca Buratti | Saurabh Pujar | Alessandro Morari | Baishakhi Ray | Saikat Chakraborty
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Understanding the functional (dis)-similarity of source code is significant for code modeling tasks such as software vulnerability and code clone detection. We present DISCO (DIS-similarity of COde), a novel self-supervised model focusing on identifying (dis)similar functionalities of source code. Different from existing works, our approach does not require a huge amount of randomly collected datasets. Rather, we design structure-guided code transformation algorithms to generate synthetic code clones and inject real-world security bugs, augmenting the collected datasets in a targeted way. We propose to pre-train the Transformer model with such automatically generated program contrasts to better identify similar code in the wild and differentiate vulnerable programs from benign ones. To better capture the structural features of source code, we propose a new cloze objective to encode the local tree-based context (e.g., parents or sibling nodes). We pre-train our model with a much smaller dataset, the size of which is only 5% of the state-of-the-art models’ training datasets, to illustrate the effectiveness of our data augmentation and the pre-training approach. The evaluation shows that, even with much less data, DISCO can still outperform the state-of-the-art models in vulnerability and code clone detection tasks.

2021

pdf bib
Unified Pre-training for Program Understanding and Generation
Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Code summarization and generation empower conversion between programming language (PL) and natural language (NL), while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART, a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks. PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding. Experiments on code summarization in the English language, code generation, and code translation in seven programming languages show that PLBART outperforms or rivals state-of-the-art models. Moreover, experiments on discriminative tasks, e.g., program repair, clone detection, and vulnerable code detection, demonstrate PLBART’s effectiveness in program understanding. Furthermore, analysis reveals that PLBART learns program syntax, style (e.g., identifier naming convention), logical flow (e.g., “if“ block inside an “else“ block is equivalent to “else if“ block) that are crucial to program semantics and thus excels even with limited annotations.

pdf bib
Retrieval Augmented Code Generation and Summarization
Md Rizwan Parvez | Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Software developers write a lot of source code and documentation during software development. Intrinsically, developers often recall parts of source code or code summaries that they had written in the past while implementing software or documenting them. To mimic developers’ code or summary generation behavior, we propose a retrieval augmented framework, REDCODER, that retrieves relevant code or summaries from a retrieval database and provides them as a supplement to code generation or summarization models. REDCODER has a couple of uniqueness. First, it extends the state-of-the-art dense retrieval technique to search for relevant code or summaries. Second, it can work with retrieval databases that include unimodal (only code or natural language description) or bimodal instances (code-description pairs). We conduct experiments and extensive analysis on two benchmark datasets of code generation and summarization in Java and Python, and the promising results endorse the effectiveness of our proposed retrieval augmented framework.

2020

pdf bib
A Transformer-based Approach for Source Code Summarization
Wasi Ahmad | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generating a readable summary that describes the functionality of a program is known as source code summarization. In this task, learning code representation by modeling the pairwise relationship between code tokens to capture their long-range dependencies is crucial. To learn code representation for summarization, we explore the Transformer model that uses a self-attention mechanism and has shown to be effective in capturing long-range dependencies. In this work, we show that despite the approach is simple, it outperforms the state-of-the-art techniques by a significant margin. We perform extensive analysis and ablation studies that reveal several important findings, e.g., the absolute encoding of source code tokens’ position hinders, while relative encoding significantly improves the summarization performance. We have made our code publicly available to facilitate future research.

2018

pdf bib
Building Language Models for Text with Named Entities
Md Rizwan Parvez | Saikat Chakraborty | Baishakhi Ray | Kai-Wei Chang
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text in many domains involves a significant amount of named entities. Predicting the entity names is often challenging for a language model as they appear less frequent on the training corpus. In this paper, we propose a novel and effective approach to building a language model which can learn the entity names by leveraging their entity type information. We also introduce two benchmark datasets based on recipes and Java programming codes, on which we evaluate the proposed model. Experimental results show that our model achieves 52.2% better perplexity in recipe generation and 22.06% on code generation than state-of-the-art language models.