Sairam Gurajada


2024

pdf bib
Retrieval Helps or Hurts? A Deeper Dive into the Efficacy of Retrieval Augmentation to Language Models
Seiji Maekawa | Hayate Iso | Sairam Gurajada | Nikita Bhutani
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

While large language models (LMs) demonstrate remarkable performance, they encounter challenges in providing accurate responses when queried for information beyond their pre-trained memorization. Although augmenting them with relevant external information can mitigate these issues, failure to consider the necessity of retrieval may adversely affect overall performance. Previous research has primarily focused on examining how entities influence retrieval models and knowledge recall in LMs, leaving other aspects relatively unexplored. In this work, our goal is to offer a more detailed, fact-centric analysis by exploring the effects of combinations of entities and relations. To facilitate this, we construct a new question answering (QA) dataset called WiTQA (Wikipedia Triple Question Answers). This dataset includes questions about entities and relations of various popularity levels, each accompanied by a supporting passage. Our extensive experiments with diverse LMs and retrievers reveal when retrieval does not consistently enhance LMs from the viewpoints of fact-centric popularity. Confirming earlier findings, we observe that larger LMs excel in recalling popular facts. However, they notably encounter difficulty with infrequent entity-relation pairs compared to retrievers. Interestingly, they can effectively retain popular relations of less common entities. We demonstrate the efficacy of our finer-grained metric and insights through an adaptive retrieval system that selectively employs retrieval and recall based on the frequencies of entities and relations in the question.

pdf bib
XATU: A Fine-grained Instruction-based Benchmark for Explainable Text Updates
Haopeng Zhang | Hayate Iso | Sairam Gurajada | Nikita Bhutani
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Text editing is a crucial task of modifying text to better align with user intents. However, existing text editing benchmark datasets contain only coarse-grained instructions and lack explainability, thus resulting in outputs that deviate from the intended changes outlined in the gold reference. To comprehensively investigate the text editing capabilities of large language models (LLMs), this paper introduces XATU, the first benchmark specifically designed for fine-grained instruction-based explainable text editing. XATU considers finer-grained text editing tasks of varying difficulty (simplification, grammar check, fact-check, etc.), incorporating lexical, syntactic, semantic, and knowledge-intensive edit aspects. To enhance interpretability, we combine LLM-based annotation and human annotation, resulting in a benchmark that includes fine-grained instructions and gold-standard edit explanations. By evaluating existing LLMs against our benchmark, we demonstrate the effectiveness of instruction tuning and the impact of underlying architecture across various editing tasks. Furthermore, extensive experimentation reveals the significant role of explanations in fine-tuning language models for text editing tasks. The benchmark will be open-sourced to support reproduction and facilitate future research at https://github.com/megagonlabs/xatu.

2022

pdf bib
Cross-lingual Short-text Entity Linking: Generating Features for Neuro-Symbolic Methods
Qiuhao Lu | Sairam Gurajada | Prithviraj Sen | Lucian Popa | Dejing Dou | Thien Nguyen
Proceedings of the Fourth Workshop on Data Science with Human-in-the-Loop (Language Advances)

Entity linking (EL) on short text is crucial for a variety of industrial applications. Compared with general long-text EL, short-text EL poses particular challenges as the limited context restricts the clues one can leverage to disambiguate textual mentions. On the other hand, existing studies mostly focus on black-box neural methods and thus lack interpretability, which is critical to industrial applications in certain areas. In this study, we extend upon LNN-EL, a monolingual short-text EL method based on interpretable first-order logic, by incorporating three sets of multilingual features to enable disambiguating mentions written in languages other than English. More specifically, we use multilingual autoencoding language models (i.e., mBERT) to capture the similarities between the mention with its context and the candidate entity; we use multilingual sequence-to-sequence language models (i.e., mBART and mT5) to represent the likelihood of the text given the candidate entity. We also propose a word-level context feature to capture the semantic evidence of the co-occurring mentions. We evaluate the proposed xLNN-EL approach on the QALD-9-multilingual dataset and demonstrate the cross-linguality of the model and the effectiveness of the features.

pdf bib
SYGMA: A System for Generalizable and Modular Question Answering Over Knowledge Bases
Sumit Neelam | Udit Sharma | Hima Karanam | Shajith Ikbal | Pavan Kapanipathi | Ibrahim Abdelaziz | Nandana Mihindukulasooriya | Young-Suk Lee | Santosh Srivastava | Cezar Pendus | Saswati Dana | Dinesh Garg | Achille Fokoue | G P Shrivatsa Bhargav | Dinesh Khandelwal | Srinivas Ravishankar | Sairam Gurajada | Maria Chang | Rosario Uceda-Sosa | Salim Roukos | Alexander Gray | Guilherme Lima | Ryan Riegel | Francois Luus | L V Subramaniam
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge Base Question Answering (KBQA) involving complex reasoning is emerging as an important research direction. However, most KBQA systems struggle with generalizability, particularly on two dimensions: (a) across multiple knowledge bases, where existing KBQA approaches are typically tuned to a single knowledge base, and (b) across multiple reasoning types, where majority of datasets and systems have primarily focused on multi-hop reasoning. In this paper, we present SYGMA, a modular KBQA approach developed with goal of generalization across multiple knowledge bases and multiple reasoning types. To facilitate this, SYGMA is designed as two high level modules: 1) KB-agnostic question understanding module that remain common across KBs, and generates logic representation of the question with high level reasoning constructs that are extensible, and 2) KB-specific question mapping and answering module to address the KB-specific aspects of the answer extraction. We evaluated SYGMA on multiple datasets belonging to distinct knowledge bases (DBpedia and Wikidata) and distinct reasoning types (multi-hop and temporal). State-of-the-art or competitive performances achieved on those datasets demonstrate its generalization capability.

2021

pdf bib
LNN-EL: A Neuro-Symbolic Approach to Short-text Entity Linking
Hang Jiang | Sairam Gurajada | Qiuhao Lu | Sumit Neelam | Lucian Popa | Prithviraj Sen | Yunyao Li | Alexander Gray
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Entity linking (EL) is the task of disambiguating mentions appearing in text by linking them to entities in a knowledge graph, a crucial task for text understanding, question answering or conversational systems. In the special case of short-text EL, which poses additional challenges due to limited context, prior approaches have reached good performance by employing heuristics-based methods or purely neural approaches. Here, we take a different, neuro-symbolic approach that combines the advantages of using interpretable rules based on first-order logic with the performance of neural learning. Even though constrained to use rules, we show that we reach competitive or better performance with SoTA black-box neural approaches. Furthermore, our framework has the benefits of extensibility and transferability. We show that we can easily blend existing rule templates given by a human expert, with multiple types of features (priors, BERT encodings, box embeddings, etc), and even with scores resulting from previous EL methods, thus improving on such methods. As an example of improvement, on the LC-QuAD-1.0 dataset, we show more than 3% increase in F1 score relative to previous SoTA. Finally, we show that the inductive bias offered by using logic results in a set of learned rules that transfers from one dataset to another, sometimes without finetuning, while still having high accuracy.

pdf bib
A Research Framework for Understanding Education-Occupation Alignment with NLP Techniques
Renzhe Yu | Subhro Das | Sairam Gurajada | Kush Varshney | Hari Raghavan | Carlos Lastra-Anadon
Proceedings of the 1st Workshop on NLP for Positive Impact

Understanding the gaps between job requirements and university curricula is crucial for improving student success and institutional effectiveness in higher education. In this context, natural language processing (NLP) can be leveraged to generate granular insights into where the gaps are and how they change. This paper proposes a three-dimensional research framework that combines NLP techniques with economic and educational research to quantify the alignment between course syllabi and job postings. We elaborate on key technical details of the framework and further discuss its potential positive impacts on practice, including unveiling the inequalities in and long-term consequences of education-occupation alignment to inform policymakers, and fostering information systems to support students, institutions and employers in the school-to-work pipeline.

pdf bib
Leveraging Abstract Meaning Representation for Knowledge Base Question Answering
Pavan Kapanipathi | Ibrahim Abdelaziz | Srinivas Ravishankar | Salim Roukos | Alexander Gray | Ramón Fernandez Astudillo | Maria Chang | Cristina Cornelio | Saswati Dana | Achille Fokoue | Dinesh Garg | Alfio Gliozzo | Sairam Gurajada | Hima Karanam | Naweed Khan | Dinesh Khandelwal | Young-Suk Lee | Yunyao Li | Francois Luus | Ndivhuwo Makondo | Nandana Mihindukulasooriya | Tahira Naseem | Sumit Neelam | Lucian Popa | Revanth Gangi Reddy | Ryan Riegel | Gaetano Rossiello | Udit Sharma | G P Shrivatsa Bhargav | Mo Yu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2019

pdf bib
Low-resource Deep Entity Resolution with Transfer and Active Learning
Jungo Kasai | Kun Qian | Sairam Gurajada | Yunyao Li | Lucian Popa
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Entity resolution (ER) is the task of identifying different representations of the same real-world entities across databases. It is a key step for knowledge base creation and text mining. Recent adaptation of deep learning methods for ER mitigates the need for dataset-specific feature engineering by constructing distributed representations of entity records. While these methods achieve state-of-the-art performance over benchmark data, they require large amounts of labeled data, which are typically unavailable in realistic ER applications. In this paper, we develop a deep learning-based method that targets low-resource settings for ER through a novel combination of transfer learning and active learning. We design an architecture that allows us to learn a transferable model from a high-resource setting to a low-resource one. To further adapt to the target dataset, we incorporate active learning that carefully selects a few informative examples to fine-tune the transferred model. Empirical evaluation demonstrates that our method achieves comparable, if not better, performance compared to state-of-the-art learning-based methods while using an order of magnitude fewer labels.