The scaling of large language models (LLMs) is a critical research area for the efficiency and effectiveness of model training and deployment. Our work investigates the transferability and discrepancies of scaling laws between Dense Models and Mixture of Experts (MoE) models. Through a combination of theoretical analysis and extensive experiments, including consistent loss scaling, optimal batch size/learning rate scaling, and resource allocation strategies scaling, our findings reveal that the power-law scaling framework also applies to MoE Models, indicating that the fundamental principles governing the scaling behavior of these models are preserved, even though the architecture differs. Additionally, MoE Models demonstrate superior generalization, resulting in lower testing losses with the same training compute budget compared to Dense Models. These findings indicate the scaling consistency and transfer generalization capabilities of MoE Models, providing new insights for optimizing MoE Model training and deployment strategies.
As large language models (LLMs) constantly evolve, ensuring their safety remains a critical research issue. Previous red teaming approaches for LLM safety have primarily focused on single prompt attacks or goal hijacking. To the best of our knowledge, we are the first to study LLM safety in multi-turn dialogue coreference. We created a dataset of 1,400 questions across 14 categories, each featuring multi-turn coreference safety attacks. We then conducted detailed evaluations on five widely used open-source LLMs. The results indicated that under multi-turn coreference safety attacks, the highest attack success rate was 56% with the LLaMA2-Chat-7b model, while the lowest was 13.9% with the Mistral-7B-Instruct model. These findings highlight the safety vulnerabilities in LLMs during dialogue coreference interactions.
Multimodal entity linking (MEL) aims to link ambiguous mentions in multimodal contexts to entities in a multimodal knowledge graph. A pivotal challenge is to fully leverage multi-element correlations between mentions and entities to bridge modality gap and enable fine-grained semantic matching. Existing methods attempt several local correlative mechanisms, relying heavily on the automatically learned attention weights, which may over-concentrate on partial correlations. To mitigate this issue, we formulate the correlation assignment problem as an optimal transport (OT) problem, and propose a novel MEL framework, namely OT-MEL, with OT-guided correlation assignment. Thereby, we exploit the correlation between multimodal features to enhance multimodal fusion, and the correlation between mentions and entities to enhance fine-grained matching. To accelerate model prediction, we further leverage knowledge distillation to transfer OT assignment knowledge to attention mechanism. Experimental results show that our model significantly outperforms previous state-of-the-art baselines and confirm the effectiveness of the OT-guided correlation assignment.