Benchmarking the performance of information retrieval (IR) is mostly conducted with a fixed set of documents (static corpora). However, in realistic scenarios, this is rarely the case and the documents to be retrieved are constantly updated and added. In this paper, we focus on Generative Retrievals (GR), which apply autoregressive language models to IR problems, and explore their adaptability and robustness in dynamic scenarios. We also conduct an extensive evaluation of computational and memory efficiency, crucial factors for real-world deployment of IR systems handling vast and ever-changing document collections. Our results on the StreamingQA benchmark demonstrate that GR is more adaptable to evolving knowledge (4–11%), robust in learning knowledge with temporal information, and efficient in terms of inference FLOPs (x2), indexing time (x6), and storage footprint (x4) compared to Dual Encoders (DE), which are commonly used in retrieval systems. Our paper highlights the potential of GR for future use in practical IR systems within dynamic environments.
We propose ListT5, a novel reranking approach based on Fusion-in-Decoder (FiD) that handles multiple candidate passages at both train and inference time. We also introduce an efficient inference framework for listwise ranking based on m-ary tournament sort with output caching. We evaluate and compare our model on the BEIR benchmark for zero-shot retrieval task, demonstrating that ListT5 (1) outperforms the state-of-the-art RankT5 baseline with a notable +1.3 gain in the average NDCG@10 score, (2) has an efficiency comparable to pointwise ranking models and surpasses the efficiency of previous listwise ranking models, and (3) overcomes the lost-in-the-middle problem of previous listwise rerankers. Our code, model checkpoints, and the evaluation framework will be fully open-sourced.
Research on Korean grammatical error correction (GEC) is limited, compared to other major languages such as English. We attribute this problematic circumstance to the lack of a carefully designed evaluation benchmark for Korean GEC. In this work, we collect three datasets from different sources (Kor-Lang8, Kor-Native, and Kor-Learner) that covers a wide range of Korean grammatical errors. Considering the nature of Korean grammar, We then define 14 error types for Korean and provide KAGAS (Korean Automatic Grammatical error Annotation System), which can automatically annotate error types from parallel corpora. We use KAGAS on our datasets to make an evaluation benchmark for Korean, and present baseline models trained from our datasets. We show that the model trained with our datasets significantly outperforms the currently used statistical Korean GEC system (Hanspell) on a wider range of error types, demonstrating the diversity and usefulness of the datasets. The implementations and datasets are open-sourced.
We introduce WeatherSearch, an integrated search system deployed at the Korea Meteorological Administration (KMA). WeatherSearch enables users to retrieve all the relevant data for weather forecasting from a massive weather database with simple natural language queries. We carefully design and conduct multiple expert surveys and interviews for template creation and apply data augmentation techniques including template filling to collect 4 million data points with minimal human labors. We then finetune mT5 on the collected dataset and achieve an average MRR of 0.66 and an average Recall of 0.82. We also discuss weather-data-specific characteristics that should be taken into account for creating such a system. We hope our paper serves as a simple and effective guideline for those designing similar systems in other regions of the world.