The popularity of Large Language Models (LLMs) have unleashed a new age of Language Agents for solving a diverse range of tasks. While contemporary frontier LLMs are capable enough to power reasonably good Language agents, the closed-API model makes it hard to improve in cases they perform sub-optimally. To address this, recent works have explored techniques to improve their performance using self reflection and prompt optimization techniques. While techniques like self reflection work well in an online setup, contemporary prompt optimization techniques are designed to work on simpler tasks. To address this, we introduce METAREFLECTION, a novel offline reinforcement learning technique that enhances the performance of Language Agents by augmenting a semantic memory based on experiential learnings from past trials. We demonstrate the efficacy of METAREFLECTION by evaluating across multiple domains, including complex logical reasoning, biomedical semantic similarity, open world question answering, and vulnerability threat detection, in Infrastructure-as-Code, with different agent design. METAREFLECTION boosts Language agents’ performance by 4 % to 16.82 % over the raw GPT-4 baseline and performs on par with existing state-of-the-art prompt optimization techniques while requiring fewer LLM calls.
Language models struggle in generating code for low-resource programming languages, since these are underrepresented in training data. Either examples or documentation are commonly used for improved code generation. We propose to use both types of information together and present retrieval augmented retrieval (RAR) as a two-step method for selecting relevant examples and documentation. Experiments on three low-resource languages (Power Query M, OfficeScript and Excel formulas) show that RAR outperforms independently example and grammar retrieval (+2.81–26.14%). Interestingly, we show that two-step retrieval selects better examples and documentation when used independently as well.
MBPP is a popular dataset for evaluating the task of code generation from natural language. Despite its popularity, there are three problems: (1) it relies on providing test cases to generate the right signature, (2) there is poor alignment between instruction and evaluation test cases, and (3) contamination of the exact phrasing being present in training datasets. We adapt MBPP to emphasize on generating code from just natural language by (1) removing ambiguity about the semantics of the task from the descriptions, and (2) evaluating generated code on multiple sets of assertions to account for ambiguity in the syntax. We compare popular open and closed weight models on the original (MBPP) and adapted (MBUPP) datasets.
Imagine a developer who can only change their last line of code—how often would they have to start writing a function from scratch before it is correct? Auto-regressive models for code generation from natural language have a similar limitation: they do not easily allow reconsidering earlier tokens generated. We introduce CodeFusion, a pre-trained diffusion code generation model that addresses this limitation by iteratively denoising a complete program conditioned on the encoded natural language. We evaluate CodeFusion on the task of natural language to code generation for Bash, Python, and Microsoft Excel conditional formatting (CF) rules. Experiments show that CodeFusion (75M parameters) performs on par with state-of-the-art auto-regressive systems (350M-175B parameters) in top-1 accuracy and outperforms them in top-3 and top-5 accuracy due to its better balance in diversity versus quality.
Target similarity tuning (TST) is a method of selecting relevant examples in natural language (NL) to code generation through large language models (LLMs) to improve performance. Its goal is to adapt a sentence embedding model to have the similarity between two NL inputs match the similarity between their associated code outputs. In this paper, we propose different methods to apply and improve TST in the real world. First, we replace the sentence transformer with embeddings from a larger model, which reduces sensitivity to the language distribution and thus provides more flexibility in synthetic generation of examples, and we train a tiny model that transforms these embeddings to a space where embedding similarity matches code similarity, which allows the model to remain a black box and only requires a few matrix multiplications at inference time. Second, we how to efficiently select a smaller number of training examples to train the TST model. Third, we introduce a ranking-based evaluation for TST that does not require end-to-end code generation experiments, which can be expensive to perform.