Ting Chen


2023

pdf bib
Automating Sound Change Prediction for Phylogenetic Inference: A Tukanoan Case Study
Kalvin Chang | Nathaniel Robinson | Anna Cai | Ting Chen | Annie Zhang | David Mortensen
Proceedings of the 4th Workshop on Computational Approaches to Historical Language Change

We describe a set of new methods to partially automate linguistic phylogenetic inference given (1) cognate sets with their respective protoforms and sound laws, (2) a mapping from phones to their articulatory features and (3) a typological database of sound changes.We train a neural network on these sound change data to weight articulatory distances between phones and predict intermediate sound change steps between historical protoforms and their modern descendants, replacing a linguistic expert in part of a parsimony-based phylogenetic inference algorithm. In our best experiments on Tukanoan languages, this method produces trees with a Generalized Quartet Distance of 0.12 from a tree that used expert annotations, a significant improvement over other semi-automated baselines. We discuss potential benefits and drawbacks to our neural approach and parsimony-based tree prediction. We also experiment with a minimal generalization learner for automatic sound law induction, finding it less effective than sound laws from expert annotation. Our code is publicly available.

2021

pdf bib
MURAL: Multimodal, Multitask Representations Across Languages
Aashi Jain | Mandy Guo | Krishna Srinivasan | Ting Chen | Sneha Kudugunta | Chao Jia | Yinfei Yang | Jason Baldridge
Findings of the Association for Computational Linguistics: EMNLP 2021

Both image-caption pairs and translation pairs provide the means to learn deep representations of and connections between languages. We use both types of pairs in MURAL (MUltimodal, MUltitask Representations Across Languages), a dual encoder that solves two tasks: 1) image-text matching and 2) translation pair matching. By incorporating billions of translation pairs, MURAL extends ALIGN (Jia et al.)–a state-of-the-art dual encoder learned from 1.8 billion noisy image-text pairs. When using the same encoders, MURAL’s performance matches or exceeds ALIGN’s cross-modal retrieval performance on well-resourced languages across several datasets. More importantly, it considerably improves performance on under-resourced languages, showing that text-text learning can overcome a paucity of image-caption examples for these languages. On the Wikipedia Image-Text dataset, for example, MURAL-base improves zero-shot mean recall by 8.1% on average for eight under-resourced languages and by 6.8% on average when fine-tuning. We additionally show that MURAL’s text representations cluster not only with respect to genealogical connections but also based on areal linguistics, such as the Balkan Sprachbund.

2019

pdf bib
Few-Shot Representation Learning for Out-Of-Vocabulary Words
Ziniu Hu | Ting Chen | Kai-Wei Chang | Yizhou Sun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Existing approaches for learning word embedding often assume there are sufficient occurrences for each word in the corpus, such that the representation of words can be accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary (a.k.a. OOV) words that do not appear in training corpus emerge frequently. How to learn accurate representations of these words to augment a pre-trained embedding by only a few observations is a challenging research problem. In this paper, we formulate the learning of OOV embedding as a few-shot regression problem by fitting a representation function to predict an oracle embedding vector (defined as embedding trained with abundant observations) based on limited contexts. Specifically, we propose a novel hierarchical attention network-based embedding framework to serve as the neural regression function, in which the context information of a word is encoded and aggregated from K observations. Furthermore, we propose to use Model-Agnostic Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly. Experiments show that the proposed approach significantly outperforms existing methods in constructing an accurate embedding for OOV words and improves downstream tasks when the embedding is utilized.

pdf bib
Enhancing Dialogue Symptom Diagnosis with Global Attention and Symptom Graph
Xinzhu Lin | Xiahui He | Qin Chen | Huaixiao Tou | Zhongyu Wei | Ting Chen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Symptom diagnosis is a challenging yet profound problem in natural language processing. Most previous research focus on investigating the standard electronic medical records for symptom diagnosis, while the dialogues between doctors and patients that contain more rich information are not well studied. In this paper, we first construct a dialogue symptom diagnosis dataset based on an online medical forum with a large amount of dialogues between patients and doctors. Then, we provide some benchmark models on this dataset to boost the research of dialogue symptom diagnosis. In order to further enhance the performance of symptom diagnosis over dialogues, we propose a global attention mechanism to capture more symptom related information, and build a symptom graph to model the associations between symptoms rather than treating each symptom independently. Experimental results show that both the global attention and symptom graph are effective to boost dialogue symptom diagnosis. In particular, our proposed model achieves the state-of-the-art performance on the constructed dataset.

2018

pdf bib
Task-oriented Dialogue System for Automatic Diagnosis
Zhongyu Wei | Qianlong Liu | Baolin Peng | Huaixiao Tou | Ting Chen | Xuanjing Huang | Kam-fai Wong | Xiangying Dai
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In this paper, we make a move to build a dialogue system for automatic diagnosis. We first build a dataset collected from an online medical forum by extracting symptoms from both patients’ self-reports and conversational data between patients and doctors. Then we propose a task-oriented dialogue system framework to make diagnosis for patients automatically, which can converse with patients to collect additional symptoms beyond their self-reports. Experimental results on our dataset show that additional symptoms extracted from conversation can greatly improve the accuracy for disease identification and our dialogue system is able to collect these symptoms automatically and make a better diagnosis.