Xavier Garcia


2024

pdf bib
Quality-Aware Translation Models: Efficient Generation and Quality Estimation in a Single Model
Christian Tomani | David Vilar | Markus Freitag | Colin Cherry | Subhajit Naskar | Mara Finkelstein | Xavier Garcia | Daniel Cremers
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Maximum-a-posteriori (MAP) decoding is the most widely used decoding strategy for neural machine translation (NMT) models. The underlying assumption is that model probability correlates well with human judgment, with better translations getting assigned a higher score by the model. However, research has shown that this assumption does not always hold, and generation quality can be improved by decoding to optimize a utility function backed by a metric or quality-estimation signal, as is done by Minimum Bayes Risk (MBR) or Quality-Aware decoding. The main disadvantage of these approaches is that they require an additional model to calculate the utility function during decoding, significantly increasing the computational cost. In this paper, we propose to make the NMT models themselves quality-aware by training them to estimate the quality of their own output. Using this approach for MBR decoding we can drastically reduce the size of the candidate list, resulting in a speed-up of two-orders of magnitude. When applying our method to MAP decoding we obtain quality gains similar or even superior to quality reranking approaches, but with the efficiency of single pass decoding.

2023

pdf bib
Transcending Scaling Laws with 0.1% Extra Compute
Yi Tay | Jason Wei | Hyung Chung | Vinh Tran | David So | Siamak Shakeri | Xavier Garcia | Steven Zheng | Jinfeng Rao | Aakanksha Chowdhery | Denny Zhou | Donald Metzler | Slav Petrov | Neil Houlsby | Quoc Le | Mostafa Dehghani
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Scaling language models improves performance but comes with significant computational costs. This paper proposes UL2R, a method that substantially improves existing language models and their scaling curves with a relatively tiny amount of extra compute. The key idea is to continue training a state-of-the-art large language model on a few more steps with UL2’s mixture-of-denoiser objective. We show that, with almost negligible extra computational costs and no new sources of data, we are able to substantially improve the scaling properties of large language models on downstream metrics. In this paper, we continue training a baseline language model, PaLM, with ULR2, introducing a new set of models at 8B, 62B, and 540B scale which we call U-PaLM. Impressively, at 540B scale, we show an approximately 2x computational savings rate where U-PaLM achieves the same performance as the final PaLM 540B model at around half its computational budget (i.e., saving ~4.4 million TPUv4 hours). We further show that this improved scaling curve leads to “emergent abilities” on challenging BIG-Bench tasks—for instance, U-PaLM does much better on some tasks or demonstrates better quality at much smaller scale (62B as opposed to 540B). Overall, we show that U-PaLM outperforms PaLM on many few-shot setups, including reasoning tasks with chain-of-thought (e.g., GSM8K), multilingual tasks (MGSM, TydiQA), MMLU and challenging BIG-Bench tasks.

pdf bib
Interactive-Chain-Prompting: Ambiguity Resolution for Crosslingual Conditional Generation with Interaction
Jonathan Pilault | Xavier Garcia | Arthur Bražinskas | Orhan Firat
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation
Parker Riley | Timothy Dozat | Jan A. Botha | Xavier Garcia | Dan Garrette | Jason Riesa | Orhan Firat | Noah Constant
Transactions of the Association for Computational Linguistics, Volume 11

We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task.

2022

pdf bib
Few-shot Controllable Style Transfer for Low-Resource Multilingual Settings
Kalpesh Krishna | Deepak Nathani | Xavier Garcia | Bidisha Samanta | Partha Talukdar
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Style transfer is the task of rewriting a sentence into a target style while approximately preserving content. While most prior literature assumes access to a large style-labelled corpus, recent work (Riley et al. 2021) has attempted “few-shot” style transfer using only 3-10 sentences at inference for style extraction. In this work we study a relevant low-resource setting: style transfer for languages where no style-labelled corpora are available. We notice that existing few-shot methods perform this task poorly, often copying inputs verbatim. We push the state-of-the-art for few-shot style transfer with a new method modeling the stylistic difference between paraphrases. When compared to prior work, our model achieves 2-3x better performance in formality transfer and code-mixing addition across seven languages. Moreover, our method is better at controlling the style transfer magnitude using an input scalar knob. We report promising qualitative results for several attribute transfer tasks (sentiment transfer, simplification, gender neutralization, text anonymization) all without retraining the model. Finally, we find model evaluation to be difficult due to the lack of datasets and metrics for many languages. To facilitate future research we crowdsource formality annotations for 4000 sentence pairs in four Indic languages, and use this data to design our automatic evaluations.

2021

pdf bib
Harnessing Multilinguality in Unsupervised Machine Translation for Rare Languages
Xavier Garcia | Aditya Siddhant | Orhan Firat | Ankur Parikh
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Unsupervised translation has reached impressive performance on resource-rich language pairs such as English-French and English-German. However, early studies have shown that in more realistic settings involving low-resource, rare languages, unsupervised translation performs poorly, achieving less than 3.0 BLEU. In this work, we show that multilinguality is critical to making unsupervised systems practical for low-resource settings. In particular, we present a single model for 5 low-resource languages (Gujarati, Kazakh, Nepali, Sinhala, and Turkish) to and from English directions, which leverages monolingual and auxiliary parallel data from other high-resource language pairs via a three-stage training scheme. We outperform all current state-of-the-art unsupervised baselines for these languages, achieving gains of up to 14.4 BLEU. Additionally, we outperform strong supervised baselines for various language pairs as well as match the performance of the current state-of-the-art supervised model for Nepali-English. We conduct a series of ablation studies to establish the robustness of our model under different degrees of data quality, as well as to analyze the factors which led to the superior performance of the proposed approach over traditional unsupervised models.

pdf bib
Towards Continual Learning for Multilingual Machine Translation via Vocabulary Substitution
Xavier Garcia | Noah Constant | Ankur Parikh | Orhan Firat
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We propose a straightforward vocabulary adaptation scheme to extend the language capacity of multilingual machine translation models, paving the way towards efficient continual learning for multilingual machine translation. Our approach is suitable for large-scale datasets, applies to distant languages with unseen scripts, incurs only minor degradation on the translation performance for the original language pairs and provides competitive performance even in the case where we only possess monolingual data for the new languages.

2020

pdf bib
A Multilingual View of Unsupervised Machine Translation
Xavier Garcia | Pierre Foret | Thibault Sellam | Ankur Parikh
Findings of the Association for Computational Linguistics: EMNLP 2020

We present a probabilistic framework for multilingual neural machine translation that encompasses supervised and unsupervised setups, focusing on unsupervised translation. In addition to studying the vanilla case where there is only monolingual data available, we propose a novel setup where one language in the (source, target) pair is not associated with any parallel data, but there may exist auxiliary parallel data that contains the other. This auxiliary data can naturally be utilized in our probabilistic framework via a novel cross-translation loss term. Empirically, we show that our approach results in higher BLEU scores over state-of-the-art unsupervised models on the WMT’14 English-French, WMT’16 English-German, and WMT’16 English-Romanian datasets in most directions.