Prompt engineering is very important to enhance the performance of large language models (LLMs). When dealing with complex issues, prompt engineers tend to distill multiple patterns from examples and inject relevant solutions to optimize the prompts, achieving satisfying results. However, existing automatic prompt optimization techniques are only limited to producing single flow instructions, struggling with handling diverse patterns. In this paper, we present AMPO, an automatic prompt optimization method that can iteratively develop a multi-branched prompt using failure cases as feedback. Our goal is to explore a novel way of structuring prompts with multi-branches to better handle multiple patterns in complex tasks, for which we introduce three modules: Pattern Recognition, Branch Adjustment, and Branch Pruning. In experiments across five tasks, AMPO consistently achieves the best results. Additionally, our approach demonstrates significant optimization efficiency due to our adoption of a minimal search strategy.
Prompt engineering is pivotal for harnessing the capabilities of large language models (LLMs) across diverse applications. While existing prompt optimization methods improve prompt effectiveness, they often lead to prompt drifting, wherein newly generated prompts canadversely impact previously successful cases while addressing failures. Furthermore, these methods tend to rely heavily on LLMs’ intrinsic capabilities for prompt optimization tasks. In this paper, we introduce STRAGO (StrategicGuided Optimization), a novel approach designed to mitigate prompt drifting by leveraging insights from both successful and failed cases to identify critical factors for achieving optimization objectives. STRAGO employs a how-to-do methodology, integrating in-context learning to formulate specific, actionable strategies that provide detailed, step-by-step guidance for prompt optimization. Extensive experiments conducted across a range of tasks, including reasoning, natural language understanding, domain-specific knowledge, and industrial applications, demonstrate STRAGO’s superior performance. It establishes a new stateof-the-art in prompt optimization, showcasing its ability to deliver stable and effective prompt improvements.
Multi-task learning (MTL) aims to solve multiple tasks jointly by sharing a base representation among them. This can lead to more efficient learning and better generalization, as compared to learning each task individually. However, one issue that often arises in MTL is the convergence speed between tasks varies due to differences in task difficulty, so it can be a challenge to simultaneously achieve the best performance on all tasks with a single model checkpoint. Various techniques have been proposed to address discrepancies in task convergence rate, including weighting the per-task losses and modifying task gradients. In this work, we propose a novel approach that avoids the problem of requiring all tasks to converge at the same rate, but rather allows for “asynchronous” convergence among the tasks where each task can converge on its own schedule. As our main contribution, we monitor per-task validation metrics and switch to a knowledge distillation loss once a task has converged instead of continuing to train on the true labels. This prevents the model from overfitting on converged tasks while it learns the remaining tasks. We evaluate the proposed method in two 5-task MTL setups consisting of internal e-commerce datasets. The results show that our method consistently outperforms existing loss weighting and gradient balancing approaches, achieving average improvements of 0.9% and 1.5% over the best performing baseline model in the two setups, respectively.
Recent research has shown that large language models pretrained using unsupervised approaches can achieve significant performance improvement on many downstream tasks. Typically when adapting these language models to downstream tasks, like a classification or regression task, we employ a fine-tuning paradigm in which the sentence representation from the language model is input to a task-specific head; the model is then fine-tuned end-to-end. However, with the emergence of models like GPT-3, prompt-based fine-tuning has been proven to be a successful approach for few-shot tasks. Inspired by this work, we study discrete prompt technologies in practice. There are two issues that arise with the standard prompt approach. First, it can overfit on the prompt template. Second, it requires manual effort to formulate the downstream task as a language model problem. In this paper, we propose an improvement to prompt-based fine-tuning that addresses these two issues. We refer to our approach as DynaMaR – Dynamic Prompt with Mask Token Representation. Results show that DynaMaR can achieve an average improvement of 10% in few-shot settings and improvement of 3.7% in data-rich settings over the standard fine-tuning approach on four e-commerce applications.