Xiaoran Liu


2023

pdf bib
Transfer and Active Learning for Dissonance Detection: Addressing the Rare-Class Challenge
Vasudha Varadarajan | Swanie Juhng | Syeda Mahwish | Xiaoran Liu | Jonah Luby | Christian Luhmann | H. Andrew Schwartz
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While transformer-based systems have enabled greater accuracies with fewer training examples, data acquisition obstacles still persist for rare-class tasks – when the class label is very infrequent (e.g. < 5% of samples). Active learning has in general been proposed to alleviate such challenges, but choice of selection strategy, the criteria by which rare-class examples are chosen, has not been systematically evaluated. Further, transformers enable iterative transfer-learning approaches. We propose and investigate transfer- and active learning solutions to the rare class problem of dissonance detection through utilizing models trained on closely related tasks and the evaluation of acquisition strategies, including a proposed probability-of-rare-class (PRC) approach. We perform these experiments for a specific rare-class problem: collecting language samples of cognitive dissonance from social media. We find that PRC is a simple and effective strategy to guide annotations and ultimately improve model accuracy while transfer-learning in a specific order can improve the cold-start performance of the learner but does not benefit iterations of active learning.

pdf bib
CoLLiE: Collaborative Training of Large Language Models in an Efficient Way
Kai Lv | Shuo Zhang | Tianle Gu | Shuhao Xing | Jiawei Hong | Keyu Chen | Xiaoran Liu | Yuqing Yang | Honglin Guo | Tengxiao Liu | Yu Sun | Qipeng Guo | Hang Yan | Xipeng Qiu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Large language models (LLMs) are increasingly pivotal in a wide range of natural language processing tasks. Access to pre-trained models, courtesy of the open-source community, has made it possible to adapt these models to specific applications for enhanced performance. However, the substantial resources required for training these models necessitate efficient solutions. This paper introduces CoLLiE, an efficient library that facilitates collaborative training of large language models using 3D parallelism, parameter-efficient fine-tuning (PEFT) methods, and optimizers such as Lion, Adan, Sophia, and LOMO. With its modular design and comprehensive functionality, CoLLiE offers a balanced blend of efficiency, ease of use, and customization. CoLLiE has proven superior training efficiency in comparison with prevalent solutions in pre-training and fine-tuning scenarios. Furthermore, we provide an empirical evaluation of the correlation between model size and GPU memory consumption under different optimization methods, as well as an analysis of the throughput. Lastly, we carry out a comprehensive comparison of various optimizers and PEFT methods within the instruction-tuning context. CoLLiE is available at https://github.com/OpenLMLab/collie.