While Reinforcement Learning from Human Feedback (RLHF) significantly enhances the generation quality of Large Language Models (LLMs), recent studies have raised concerns regarding the complexity and instability associated with the Proximal Policy Optimization (PPO) algorithm, proposing a series of order-based alignment methods as viable alternatives. This paper delves into existing order-based methods, unifying them into one framework and examining their inefficiencies in utilizing reward values. Building upon these findings, we propose a new Value-based Calibration (VCB) method to better align LLMs with human preferences. Experimental results demonstrate that VCB surpasses existing alignment methods on AI assistant and summarization datasets, providing impressive generalizability, robustness, and diversity in different settings.
We present Sailor, a family of open language models ranging from 0.5B to 14B parameters, tailored for South-East Asian (SEA) languages. From Qwen1.5, Sailor models accept 200B to 400B tokens during continual pre-training, primarily covering the languages of English, Chinese, Vietnamese, Thai, Indonesian, Malay, and Lao. The training leverages several techniques, including BPE dropout for improving the model robustness, aggressive data cleaning and deduplication, and small proxy models to optimize the data mixture. Experimental results on four typical tasks indicate that Sailor models demonstrate strong performance across different benchmarks, including commonsense reasoning, question answering, reading comprehension and examination. We share our insights to spark a wider interest in developing large language models for multilingual use cases.
Entity alignment (EA) aims to discover the equivalent entity pairs between KGs, which is a crucial step for integrating multi-source KGs.For a long time, most researchers have regarded EA as a pure graph representation learning task and focused on improving graph encoders while paying little attention to the decoding process. In this paper, we propose an effective and efficient EA Decoding Algorithm via Third-order Tensor Isomorphism (DATTI).Specifically, we derive two sets of isomorphism equations: (1) Adjacency tensor isomorphism equations and (2) Gramian tensor isomorphism equations. By combining these equations, DATTI could effectively utilize the adjacency and inner correlation isomorphisms of KGs to enhance the decoding process of EA.Extensive experiments on public datasets indicate that our decoding algorithm can deliver significant performance improvements even on the most advanced EA methods, while the extra required time is less than 3 seconds.
Entity alignment (EA) aims to find entities in different knowledge graphs (KGs) that refer to the same object in the real world. Recent studies incorporate temporal information to augment the representations of KGs. The existing methods for EA between temporal KGs (TKGs) utilize a time-aware attention mechanisms to incorporate relational and temporal information into entity embeddings. The approaches outperform the previous methods by using temporal information. However, we believe that it is not necessary to learn the embeddings of temporal information in KGs since most TKGs have uniform temporal representations. Therefore, we propose a simple GNN model combined with a temporal information matching mechanism, which achieves better performance with less time and fewer parameters. Furthermore, since alignment seeds are difficult to label in real-world applications, we also propose a method to generate unsupervised alignment seeds via the temporal information of TKG. Extensive experiments on public datasets indicate that our supervised method significantly outperforms the previous methods and the unsupervised one has competitive performance.
Entity Alignment (EA) aims to find equivalent entity pairs between KGs, which is the core step to bridging and integrating multi-source KGs. In this paper, we argue that existing complex EA methods inevitably inherit the inborn defects from their neural network lineage: poor interpretability and weak scalability. Inspired by recent studies, we reinvent the classical Label Propagation algorithm to effectively run on KGs and propose a neural-free EA framework — LightEA, consisting of three efficient components: (i) Random Orthogonal Label Generation, (ii) Three-view Label Propagation, and (iii) Sparse Sinkhorn Operation.According to the extensive experiments on public datasets, LightEA has impressive scalability, robustness, and interpretability. With a mere tenth of time consumption, LightEA achieves comparable results to state-of-the-art methods across all datasets and even surpasses them on many. Besides, due to the computational process of LightEA being entirely linear, we could trace the propagation process at each step and clearly explain how the entities are aligned.
Cross-lingual entity alignment (EA) aims to find the equivalent entities between crosslingual KGs (Knowledge Graphs), which is a crucial step for integrating KGs. Recently, many GNN-based EA methods are proposed and show decent performance improvements on several public datasets. However, existing GNN-based EA methods inevitably inherit poor interpretability and low efficiency from neural networks. Motivated by the isomorphic assumption of GNN-based methods, we successfully transform the cross-lingual EA problem into an assignment problem. Based on this re-definition, we propose a frustratingly Simple but Effective Unsupervised entity alignment method (SEU) without neural networks. Extensive experiments have been conducted to show that our proposed unsupervised approach even beats advanced supervised methods across all public datasets while having high efficiency, interpretability, and stability.
Supplementing product information by extracting attribute values from title is a crucial task in e-Commerce domain. Previous studies treat each attribute only as an entity type and build one set of NER tags (e.g., BIO) for each of them, leading to a scalability issue which unfits to the large sized attribute system in real world e-Commerce. In this work, we propose a novel approach to support value extraction scaling up to thousands of attributes without losing performance: (1) We propose to regard attribute as a query and adopt only one global set of BIO tags for any attributes to reduce the burden of attribute tag or model explosion; (2) We explicitly model the semantic representations for attribute and title, and develop an attention mechanism to capture the interactive semantic relations in-between to enforce our framework to be attribute comprehensive. We conduct extensive experiments in real-life datasets. The results show that our model not only outperforms existing state-of-the-art NER tagging models, but also is robust and generates promising results for up to 8,906 attributes.
This paper describes our submissions to Task 2 in SemEval 2018, i.e., Multilingual Emoji Prediction. We first investigate several traditional Natural Language Processing (NLP) features, and then design several deep learning models. For subtask 1: Emoji Prediction in English, we combine two different methods to represent tweet, i.e., supervised model using traditional features and deep learning model. For subtask 2: Emoji Prediction in Spanish, we only use deep learning model.