Xinyuan Zhang


2023

pdf bib
Fast and Accurate Factual Inconsistency Detection Over Long Documents
Barrett Lattimer | Patrick H. Chen | Xinyuan Zhang | Yi Yang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Generative AI models exhibit remarkable potential; however, hallucinations across various tasks present a significant challenge, particularly for longer inputs that current approaches struggle to address effectively. We introduce SCALE (Source Chunking Approach for Large-scale inconsistency Evaluation), a task-agnostic model for detecting factual inconsistencies using a novel chunking strategy. Specifically, SCALE is a Natural Language Inference (NLI) based model that uses large text chunks to condition over long texts. This approach achieves state-of-the-art performance in factual inconsistency detection for diverse tasks and long inputs. Additionally, we leverage the chunking mechanism and employ a novel algorithm to explain SCALE’s decisions through relevant source sentence retrieval. Our evaluations reveal that SCALE outperforms existing methods on both standard benchmarks and a new long-form dialogue dataset ScreenEval we constructed. Moreover, SCALE surpasses competitive systems in efficiency and model explanation evaluations. We have released our code and data publicly to GitHub.

2020

pdf bib
Semantic Matching for Sequence-to-Sequence Learning
Ruiyi Zhang | Changyou Chen | Xinyuan Zhang | Ke Bai | Lawrence Carin
Findings of the Association for Computational Linguistics: EMNLP 2020

In sequence-to-sequence models, classical optimal transport (OT) can be applied to semantically match generated sentences with target sentences. However, in non-parallel settings, target sentences are usually unavailable. To tackle this issue without losing the benefits of classical OT, we present a semantic matching scheme based on the Optimal Partial Transport (OPT). Specifically, our approach partially matches semantically meaningful words between source and partial target sequences. To overcome the difficulty of detecting active regions in OPT (corresponding to the words needed to be matched), we further exploit prior knowledge to perform partial matching. Extensive experiments are conducted to evaluate the proposed approach, showing consistent improvements over sequence-to-sequence tasks.

2019

pdf bib
Learning Compressed Sentence Representations for On-Device Text Processing
Dinghan Shen | Pengyu Cheng | Dhanasekar Sundararaman | Xinyuan Zhang | Qian Yang | Meng Tang | Asli Celikyilmaz | Lawrence Carin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Vector representations of sentences, trained on massive text corpora, are widely used as generic sentence embeddings across a variety of NLP problems. The learned representations are generally assumed to be continuous and real-valued, giving rise to a large memory footprint and slow retrieval speed, which hinders their applicability to low-resource (memory and computation) platforms, such as mobile devices. In this paper, we propose four different strategies to transform continuous and generic sentence embeddings into a binarized form, while preserving their rich semantic information. The introduced methods are evaluated across a wide range of downstream tasks, where the binarized sentence embeddings are demonstrated to degrade performance by only about 2% relative to their continuous counterparts, while reducing the storage requirement by over 98%. Moreover, with the learned binary representations, the semantic relatedness of two sentences can be evaluated by simply calculating their Hamming distance, which is more computational efficient compared with the inner product operation between continuous embeddings. Detailed analysis and case study further validate the effectiveness of proposed methods.

pdf bib
Syntax-Infused Variational Autoencoder for Text Generation
Xinyuan Zhang | Yi Yang | Siyang Yuan | Dinghan Shen | Lawrence Carin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present a syntax-infused variational autoencoder (SIVAE), that integrates sentences with their syntactic trees to improve the grammar of generated sentences. Distinct from existing VAE-based text generative models, SIVAE contains two separate latent spaces, for sentences and syntactic trees. The evidence lower bound objective is redesigned correspondingly, by optimizing a joint distribution that accommodates two encoders and two decoders. SIVAE works with long short-term memory architectures to simultaneously generate sentences and syntactic trees. Two versions of SIVAE are proposed: one captures the dependencies between the latent variables through a conditional prior network, and the other treats the latent variables independently such that syntactically-controlled sentence generation can be performed. Experimental results demonstrate the generative superiority of SIVAE on both reconstruction and targeted syntactic evaluations. Finally, we show that the proposed models can be used for unsupervised paraphrasing given different syntactic tree templates.

pdf bib
Improving Textual Network Embedding with Global Attention via Optimal Transport
Liqun Chen | Guoyin Wang | Chenyang Tao | Dinghan Shen | Pengyu Cheng | Xinyuan Zhang | Wenlin Wang | Yizhe Zhang | Lawrence Carin
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Constituting highly informative network embeddings is an essential tool for network analysis. It encodes network topology, along with other useful side information, into low dimensional node-based feature representations that can be exploited by statistical modeling. This work focuses on learning context-aware network embeddings augmented with text data. We reformulate the network embedding problem, and present two novel strategies to improve over traditional attention mechanisms: (i) a content-aware sparse attention module based on optimal transport; and (ii) a high-level attention parsing module. Our approach yields naturally sparse and self-normalized relational inference. It can capture long-term interactions between sequences, thus addressing the challenges faced by existing textual network embedding schemes. Extensive experiments are conducted to demonstrate our model can consistently outperform alternative state-of-the-art methods.

2018

pdf bib
Joint Embedding of Words and Labels for Text Classification
Guoyin Wang | Chunyuan Li | Wenlin Wang | Yizhe Zhang | Dinghan Shen | Xinyuan Zhang | Ricardo Henao | Lawrence Carin
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Word embeddings are effective intermediate representations for capturing semantic regularities between words, when learning the representations of text sequences. We propose to view text classification as a label-word joint embedding problem: each label is embedded in the same space with the word vectors. We introduce an attention framework that measures the compatibility of embeddings between text sequences and labels. The attention is learned on a training set of labeled samples to ensure that, given a text sequence, the relevant words are weighted higher than the irrelevant ones. Our method maintains the interpretability of word embeddings, and enjoys a built-in ability to leverage alternative sources of information, in addition to input text sequences. Extensive results on the several large text datasets show that the proposed framework outperforms the state-of-the-art methods by a large margin, in terms of both accuracy and speed.

pdf bib
Improved Semantic-Aware Network Embedding with Fine-Grained Word Alignment
Dinghan Shen | Xinyuan Zhang | Ricardo Henao | Lawrence Carin
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Network embeddings, which learns low-dimensional representations for each vertex in a large-scale network, have received considerable attention in recent years. For a wide range of applications, vertices in a network are typically accompanied by rich textual information such as user profiles, paper abstracts, etc. In this paper, we propose to incorporate semantic features into network embeddings by matching important words between text sequences for all pairs of vertices. We introduce an word-by-word alignment framework that measures the compatibility of embeddings between word pairs, and then adaptively accumulates these alignment features with a simple yet effective aggregation function. In experiments, we evaluate the proposed framework on three real-world benchmarks for downstream tasks, including link prediction and multi-label vertex classification. The experimental results demonstrate that our model outperforms state-of-the-art network embedding methods by a large margin.