Xuan Zhou
2024
Large Language Models Are Poor Clinical Decision-Makers: A Comprehensive Benchmark
Fenglin Liu
|
Zheng Li
|
Hongjian Zhou
|
Qingyu Yin
|
Jingfeng Yang
|
Xianfeng Tang
|
Chen Luo
|
Ming Zeng
|
Haoming Jiang
|
Yifan Gao
|
Priyanka Nigam
|
Sreyashi Nag
|
Bing Yin
|
Yining Hua
|
Xuan Zhou
|
Omid Rohanian
|
Anshul Thakur
|
Lei Clifton
|
David A. Clifton
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
The adoption of large language models (LLMs) to assist clinicians has attracted remarkable attention. Existing works mainly adopt the close-ended question-answering (QA) task with answer options for evaluation. However, many clinical decisions involve answering open-ended questions without pre-set options. To better understand LLMs in the clinic, we construct a benchmark ClinicBench. We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks. Furthermore, we construct six novel datasets and clinical tasks that are complex but common in real-world practice, e.g., open-ended decision-making, long document processing, and emerging drug analysis. We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings. Finally, we invite medical experts to evaluate the clinical usefulness of LLMs
2021
Multi-Grained Knowledge Distillation for Named Entity Recognition
Xuan Zhou
|
Xiao Zhang
|
Chenyang Tao
|
Junya Chen
|
Bing Xu
|
Wei Wang
|
Jing Xiao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Although pre-trained big models (e.g., BERT, ERNIE, XLNet, GPT3 etc.) have delivered top performance in Seq2seq modeling, their deployments in real-world applications are often hindered by the excessive computations and memory demand involved. For many applications, including named entity recognition (NER), matching the state-of-the-art result under budget has attracted considerable attention. Drawing power from the recent advance in knowledge distillation (KD), this work presents a novel distillation scheme to efficiently transfer the knowledge learned from big models to their more affordable counterpart. Our solution highlights the construction of surrogate labels through the k-best Viterbi algorithm to distill knowledge from the teacher model. To maximally assimilate knowledge into the student model, we propose a multi-grained distillation scheme, which integrates cross entropy involved in conditional random field (CRF) and fuzzy learning. To validate the effectiveness of our proposal, we conducted a comprehensive evaluation on five NER benchmarks, reporting cross-the-board performance gains relative to competing prior-arts. We further discuss ablation results to dissect our gains.
Search
Fix data
Co-authors
- Junya Chen 1
- Lei Clifton 1
- David A. Clifton 1
- Yifan Gao 1
- Yining Hua 1
- show all...