Yang Liu

The Chinese University of Hong Kong (Shenzhen)

Other people with similar names: Yang Liu (Edinburgh Ph.D., Microsoft), Yang Liu (3M Health Information Systems), Yang Liu (University of Helsinki), Yang Liu (刘扬) (刘扬; Ph.D Purdue; ICSI, Dallas, Facebook, Liulishuo, Amazon), Yang Liu (刘扬) (Peking University), Yang Liu (Microsoft Cognitive Services Research), Yang Liu (Univ. of Michigan, UC Santa Cruz), Yang Liu (National University of Defense Technology), Yang Liu (Tianjin University, China), Yang Janet Liu (Georgetown University; 刘洋), Yang Liu (May refer to several people), Yang Liu (Samsung Research Center Beijing), Yang Liu (Beijing Language and Culture University), Yang Liu (刘洋) (刘洋; ICT, Tsinghua, Beijing Academy of Artificial Intelligence), Yang Liu (Wilfrid Laurier University)


2022

pdf bib
A Simple yet Effective Relation Information Guided Approach for Few-Shot Relation Extraction
Yang Liu | Jinpeng Hu | Xiang Wan | Tsung-Hui Chang
Findings of the Association for Computational Linguistics: ACL 2022

Few-Shot Relation Extraction aims at predicting the relation for a pair of entities in a sentence by training with a few labelled examples in each relation. Some recent works have introduced relation information (i.e., relation labels or descriptions) to assist model learning based on Prototype Network. However, most of them constrain the prototypes of each relation class implicitly with relation information, generally through designing complex network structures, like generating hybrid features, combining with contrastive learning or attention networks. We argue that relation information can be introduced more explicitly and effectively into the model. Thus, this paper proposes a direct addition approach to introduce relation information. Specifically, for each relation class, the relation representation is first generated by concatenating two views of relations (i.e., [CLS] token embedding and the mean value of embeddings of all tokens) and then directly added to the original prototype for both train and prediction. Experimental results on the benchmark dataset FewRel 1.0 show significant improvements and achieve comparable results to the state-of-the-art, which demonstrates the effectiveness of our proposed approach. Besides, further analyses verify that the direct addition is a much more effective way to integrate the relation representations and the original prototypes.

pdf bib
Learn from Relation Information: Towards Prototype Representation Rectification for Few-Shot Relation Extraction
Yang Liu | Jinpeng Hu | Xiang Wan | Tsung-Hui Chang
Findings of the Association for Computational Linguistics: NAACL 2022

Few-shot Relation Extraction refers to fast adaptation to novel relation classes with few samples through training on the known relation classes. Most existing methods focus on implicitly introducing relation information (i.e., relation label or relation description) to constrain the prototype representation learning, such as contrastive learning, graphs, and specifically designed attentions, which may bring useless and even harmful parameters. Besides, these approaches are limited in handing outlier samples far away from the class center due to the weakly implicit constraint. In this paper, we propose an effective and parameter-less Prototype Rectification Method (PRM) to promote few-shot relation extraction, where we utilize a prototype rectification module to rectify original prototypes explicitly by the relation information. Specifically, PRM is composed of two gate mechanisms. One gate decides how much of the original prototype remains, and another one updates the remained prototype with relation information. In doing so, better and stabler global relation information can be captured for guiding prototype representations, and thus PRM can robustly deal with outliers. Moreover, we also extend PRM to both none-of-the-above (NOTA) and domain adaptation scenarios. Experimental results on FewRel 1.0 and 2.0 datasets demonstrate the effectiveness of our proposed method, which achieves state-of-the-art performance.

pdf bib
Hero-Gang Neural Model For Named Entity Recognition
Jinpeng Hu | Yaling Shen | Yang Liu | Xiang Wan | Tsung-Hui Chang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Named entity recognition (NER) is a fundamental and important task in NLP, aiming at identifying named entities (NEs) from free text. Recently, since the multi-head attention mechanism applied in the Transformer model can effectively capture longer contextual information, Transformer-based models have become the mainstream methods and have achieved significant performance in this task. Unfortunately, although these models can capture effective global context information, they are still limited in the local feature and position information extraction, which is critical in NER. In this paper, to address this limitation, we propose a novel Hero-Gang Neural structure (HGN), including the Hero and Gang module, to leverage both global and local information to promote NER. Specifically, the Hero module is composed of a Transformer-based encoder to maintain the advantage of the self-attention mechanism, and the Gang module utilizes a multi-window recurrent module to extract local features and position information under the guidance of the Hero module. Afterward, the proposed multi-window attention effectively combines global information and multiple local features for predicting entity labels. Experimental results on several benchmark datasets demonstrate the effectiveness of our proposed model.