Yangguang Li


2024

pdf bib
GraphReader: Building Graph-based Agent to Enhance Long-Context Abilities of Large Language Models
Shilong Li | Yancheng He | Hangyu Guo | Xingyuan Bu | Ge Bai | Jie Liu | Jiaheng Liu | Xingwei Qu | Yangguang Li | Wanli Ouyang | Wenbo Su | Bo Zheng
Findings of the Association for Computational Linguistics: EMNLP 2024

Long-context capabilities are essential for large language models (LLMs) to tackle complex and long-input tasks. Despite numerous efforts made to optimize LLMs for long contexts, challenges persist in robustly processing long inputs. In this paper, we introduce GraphReader, a graph-based agent system designed to handle long texts by structuring them into a graph and employing an agent to explore this graph autonomously. Upon receiving a question, the agent first undertakes a step-by-step analysis and devises a rational plan. It then invokes a set of predefined functions to read node content and neighbors, facilitating a coarse-to-fine exploration of the graph. Throughout the exploration, the agent continuously records new insights and reflects on current circumstances to optimize the process until it has gathered sufficient information to generate an answer. Experimental results on the LV-Eval dataset reveal that GraphReader using a 4k context window, consistently outperforms GPT-4-128k across context lengths from 16k to 256k by a large margin. Additionally, our approach demonstrates superior performance on four challenging single-hop and multi-hop benchmarks.

2022

pdf bib
R2F: A General Retrieval, Reading and Fusion Framework for Document-level Natural Language Inference
Hao Wang | Yixin Cao | Yangguang Li | Zhen Huang | Kun Wang | Jing Shao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Document-level natural language inference (DOCNLI) is a new challenging task in natural language processing, aiming at judging the entailment relationship between a pair of hypothesis and premise documents. Current datasets and baselines largely follow sentence-level settings, but fail to address the issues raised by longer documents. In this paper, we establish a general solution, named Retrieval, Reading and Fusion (R2F) framework, and a new setting, by analyzing the main challenges of DOCNLI: interpretability, long-range dependency, and cross-sentence inference. The basic idea of the framework is to simplify document-level task into a set of sentence-level tasks, and improve both performance and interpretability with the power of evidence. For each hypothesis sentence, the framework retrieves evidence sentences from the premise, and reads to estimate its credibility. Then the sentence-level results are fused to judge the relationship between the documents. For the setting, we contribute complementary evidence and entailment label annotation on hypothesis sentences, for interpretability study. Our experimental results show that R2F framework can obtain state-of-the-art performance and is robust for diverse evidence retrieval methods. Moreover, it can give more interpretable prediction results. Our model and code are released at https://github.com/phoenixsecularbird/R2F.

pdf bib
IMCI: Integrate Multi-view Contextual Information for Fact Extraction and Verification
Hao Wang | Yangguang Li | Zhen Huang | Yong Dou
Proceedings of the 29th International Conference on Computational Linguistics

With the rapid development of automatic fake news detection technology, fact extraction and verification (FEVER) has been attracting more attention. The task aims to extract the most related fact evidences from millions of open-domain Wikipedia documents and then verify the credibility of corresponding claims. Although several strong models have been proposed for the task and they have made great process, we argue that they fail to utilize multi-view contextual information and thus cannot obtain better performance. In this paper, we propose to integrate multi-view contextual information (IMCI) for fact extraction and verification. For each evidence sentence, we define two kinds of context, i.e. intra-document context and inter-document context. Intra-document context consists of the document title and all the other sentences from the same document. Inter-document context consists of all other evidences which may come from different documents. Then we integrate the multi-view contextual information to encode the evidence sentences to handle the task. Our experimental results on FEVER 1.0 shared task show that our IMCI framework makes great progress on both fact extraction and verification, and achieves state-of-the-art performance with a winning FEVER score of 73.96% and label accuracy of 77.25% on the online blind test set. We also conduct ablation study to detect the impact of multi-view contextual information.