Yanjiang Liu
2024
XMC-Agent : Dynamic Navigation over Scalable Hierarchical Index for Incremental Extreme Multi-label Classification
Yanjiang Liu
|
Tianyun Zhong
|
Yaojie Lu
|
Hongyu Lin
|
Ben He
|
Shuheng Zhou
|
Huijia Zhu
|
Weiqiang Wang
|
Zhongyi Liu
|
Xianpei Han
|
Le Sun
Findings of the Association for Computational Linguistics: ACL 2024
The eXtreme Multi-label Classification (XMC) aims at accurately assigning large-scale labels to instances, and is challenging for learning, managing, and predicting over the large-scale and rapidly growing set of labels. Traditional XMC methods, like one-vs-all and tree-based methods struggle with the growing set of labels due to their static label assumptions, and embedding-based methods struggle with the complex mapping relationships due to their late-interaction paradigm. In this paper, we propose a large language model (LLM) powered agent framework for extreme multi-label classification – XMC-Agent, which can effectively learn, manage and predict the extremely large and dynamically increasing set of labels. Specifically, XMC-Agent models the extreme multi-label classification task as a dynamic navigation problem, employing a scalable hierarchical label index to effectively manage the unified label space. Additionally, we propose two algorithms to enhance the dynamic navigation capabilities of XMC-Agent: a self-construction algorithm for building the scalable hierarchical index, and an iterative feedback learning algorithm for adjusting the agent to specific tasks. Experiments show that XMC-Agentachieves the state-of-the-art performance on three standard datasets.
2023
Understanding Differential Search Index for Text Retrieval
Xiaoyang Chen
|
Yanjiang Liu
|
Ben He
|
Le Sun
|
Yingfei Sun
Findings of the Association for Computational Linguistics: ACL 2023
The Differentiable Search Index (DSI) is a novel information retrieval (IR) framework that utilizes a differentiable function to generate a sorted list of document identifiers in response to a given query. However, due to the black-box nature of the end-to-end neural architecture, it remains to be understood to what extent DSI possesses the basic indexing and retrieval abilities. To mitigate this gap, in this study, we define and examine three important abilities that a functioning IR framework should possess, namely, exclusivity, completeness, and relevance ordering. Our analytical experimentation shows that while DSI demonstrates proficiency in memorizing the unidirectional mapping from pseudo queries to document identifiers, it falls short in distinguishing relevant documents from random ones, thereby negatively impacting its retrieval effectiveness. To address this issue, we propose a multi-task distillation approach to enhance the retrieval quality without altering the structure of the model and successfully endow it with improved indexing abilities. Through experiments conducted on various datasets, we demonstrate that our proposed method outperforms previous DSI baselinesThe code and data for this work can be found at https://github.com/VerdureChen/Understang_DSI.
Search
Co-authors
- Ben He 2
- Le Sun 2
- Xiaoyang Chen 1
- Yingfei Sun 1
- Tianyun Zhong 1
- show all...