2024
pdf
bib
abs
Rationales for Answers to Simple Math Word Problems Confuse Large Language Models
Yidan Zhang
|
Mingfeng Xue
|
Dayiheng Liu
|
Zhenan He
Findings of the Association for Computational Linguistics: ACL 2024
Recently, large language models (LLMs) have demonstrated breakthrough mathematical problem-solving capabilities in grade school math word problems (MWP). For example, on the MWP benchmark GSM8K, the accuracy of GPT-3.5-Turbo and MetaMath-70B reaches 80.80% and 82.30%, respectively. One question arises, does it mean that LLMs have truly mastered related mathematical problem-solving abilities? In this paper, by presenting two types of benchmarks, where MCGSM8K aims at selecting one correct solution from four solutions, while GSM8K-Judgement judges whether a solution to a given question is true or false, we demonstrate that the ability of most LLMs to evaluate the mathematical reasoning process of MWP is far from sufficient. To compensate for this issue, we propose hybrid supervised fine-tuning data from the training data of GSM8K, MCGSM8K, and GSM8K-Judgement, which significantly improves performance on the proposed reasoning process evaluation benchmarks. For example, fine-tuning improves the performance of LLaMA-2-13B from 33.51% to 70.89% on MCGSM8K. In conclusion, we experimentally demonstrate that most LLMs have limited ability to evaluate the mathematical reasoning process of MWP, which can be enhanced through fine-tuning.
pdf
bib
abs
Large Language Models Can Not Perform Well in Understanding and Manipulating Natural Language at Both Character and Word Levels?
Yidan Zhang
|
Zhenan He
Findings of the Association for Computational Linguistics: EMNLP 2024
Despite their promising performance across various tasks, recent studies reveal that Large language models (LLMs) still exhibit significant deficiencies in handling several word-level and character-level tasks, e.g., word unscrambling and sentence editing, indicating urgent needs for substantial improvements in basic language understanding and manipulation. To address these challenges, it is crucial to develop large-scale benchmarks that can comprehensively assess the performance of LLMs in basic language tasks. In this paper, we introduce a bilingual benchmark, CWUM, to investigate the capabilities and limitations of LLMs in understanding and manipulating natural language at both character and word levels. CWUM consists of 15 simple text editing tasks, e.g., letter counting, word reversing, Chinese character inserting, etc. We conduct extensive experiments on eight advanced LLMs, including base models and instruction-tuned (chat) variants. The experimental results highlight significant failures of existing LLMs on CWUM tasks that humans can solve perfectly with 100% accuracy. On English tasks of CWUM, the average accuracy of GPT-4, LLaMA-3-70B, and Qwen-72B is 66.64%, 39.32%, and 33.16%, respectively, which lags far behind human performance. Instruction-tuning the base model does not lead to a distinct performance improvement, as the average accuracy of LLaMA-3-70B-Instruct on English tasks is only 1.44% higher than that of the base LLaMA-3-70B. Ultimately, we show that supervised fine-tuning (SFT) can enhance model performance on CWUM without compromising its ability to generalize across general tasks.
2023
pdf
bib
abs
Dynamic Voting for Efficient Reasoning in Large Language Models
Mingfeng Xue
|
Dayiheng Liu
|
Wenqiang Lei
|
Xingzhang Ren
|
Baosong Yang
|
Jun Xie
|
Yidan Zhang
|
Dezhong Peng
|
Jiancheng Lv
Findings of the Association for Computational Linguistics: EMNLP 2023
Multi-path voting methods like Self-consistency have been used to mitigate reasoning errors in large language models caused by factual errors and illusion generation. However, these methods require excessive computing resources as they generate numerous reasoning paths for each problem. And our experiments show that on the arithmetic reasoning task, SVAMP, half of the problems fail to obtain noticeable accuracy gains when voting with more than three paths. In this paper, we propose a novel multi-path voting technique called Dynamic Voting, which effectively reduces the number of reasoning paths during multi-path voting while preserving accuracies by applying early exiting for problems that large language models can confidently solve. Experimental evaluations on arithmetic, commonsense, and symbolic reasoning tasks under few-shot and zero-shot settings demonstrate that Dynamic Voting achieves comparable accuracies employing significantly fewer reasoning paths. Notably, one of our Dynamic Voting strategies outperforms Self-consistency using only 24.7% of the number of paths on the LetterConcat task in the few-shot setting. Furthermore, Dynamic Voting showcases strong robustness in threshold selection. It also demonstrates excellent generalizability when combined with other voting techniques, different models, and diverse prompts.
pdf
bib
abs
Unifying Discrete and Continuous Representations for Unsupervised Paraphrase Generation
Mingfeng Xue
|
Dayiheng Liu
|
Wenqiang Lei
|
Jie Fu
|
Jian Lan
|
Mei Li
|
Baosong Yang
|
Jun Xie
|
Yidan Zhang
|
Dezhong Peng
|
Jiancheng Lv
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Unsupervised paraphrase generation is a challenging task that benefits a variety of downstream NLP applications. Current unsupervised methods for paraphrase generation typically employ round-trip translation or denoising, which require translation corpus and result in paraphrases overly similar to the original sentences in surface structure. Most of these methods lack explicit control over the similarity between the original and generated sentences, and the entities are also less correctly kept. To obviate the reliance on translation data and prompt greater variations in surface structure, we propose a self-supervised pseudo-data construction method that generates diverse pseudo-paraphrases in distinct surface structures for a given sentence. To control the similarity and generate accurate entities, we propose an unsupervised paraphrasing model that encodes the sentence meaning and the entities with discrete and continuous variables, respectively. The similarity can be controlled by sampling discrete variables and the entities are kept substantially accurate due to the specific modeling of entities using continuous variables. Experimental results on two benchmark datasets demonstrate the advantages of our pseudo-data construction method compared to round-trip translation, and the superiority of our paraphrasing model over the state-of-the-art unsupervised methods.