Yingfa Chen


2024

pdf bib
Bench: Extending Long Context Evaluation Beyond 100K Tokens
Xinrong Zhang | Yingfa Chen | Shengding Hu | Zihang Xu | Junhao Chen | Moo Hao | Xu Han | Zhen Thai | Shuo Wang | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose , the first LLM benchmark featuring an average data length surpassing 100K tokens. comprises synthetic and realistic tasks spanning diverse domains in English and Chinese. The tasks in are designed to require an understanding of long dependencies in contexts and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. Based on , we evaluate several state-of-the-art LLMs tailored for processing long contexts. The experimental results indicate that existing long-context LLMs still require significant advancements to process 100K+ contexts effectively. Furthermore, we present three intriguing analyses regarding the behavior of LLMs processing long context. Our code and data is released.

pdf bib
Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models
Xinrong Zhang | Yingfa Chen | Shengding Hu | Xu Han | Zihang Xu | Yuanwei Xu | Weilin Zhao | Maosong Sun | Zhiyuan Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

As large language models (LLMs) increasingly permeate daily lives, there is a growing demand for real-time interactions that mirror human conversations. Traditional turn-based chat systems driven by LLMs prevent users from verbally interacting with the system while generating responses.To overcome these limitations, we adapt existing LLMs to duplex models so that they can listen to users while generating output and dynamically adjust themselves to provide instant feedback.Specifically, we divide the queries and responses of conversations into several time slices and then adopt a time-division-multiplexing (TDM) encoding-decoding strategy to process these slices pseudo-simultaneously.Furthermore, to make LLMs proficient enough to handle real-time conversations, we build a fine-tuning dataset consisting of alternating time slices of queries and responses and covering typical feedback types in instantaneous interactions.Our experiments show that although the queries and responses of conversations are segmented into incomplete slices for processing, LLMs can preserve their original performance on standard benchmarks with a few fine-tuning steps on our dataset. Automatic and human evaluation indicate that duplex models make user-AI interactions more natural and human-like, and greatly improve user satisfaction compared to vanilla LLMs. Our duplex model and dataset will be released soon.

pdf bib
Robust and Scalable Model Editing for Large Language Models
Yingfa Chen | Zhengyan Zhang | Xu Han | Chaojun Xiao | Zhiyuan Liu | Chen Chen | Kuai Li | Tao Yang | Maosong Sun
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) can make predictions using *parametric knowledge* – knowledge encoded in the model weights – or *contextual knowledge* – knowledge presented in the context. In many scenarios, a desirable behavior is that LLMs give precedence to contextual knowledge when it conflicts with the parametric knowledge, and fall back to using their parametric knowledge when the context is irrelevant. This enables updating and correcting the model’s knowledge by in-context editing instead of retraining. Previous works have shown that LLMs are inclined to ignore contextual knowledge and fail to reliably fall back to parametric knowledge when presented with irrelevant context. In this work, we discover that, with proper prompting methods, instruction-finetuned LLMs can be highly controllable by contextual knowledge and robust to irrelevant context. Utilizing this feature, we propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing. To better evaluate the robustness of model editors, we collect a new dataset, that contains irrelevant questions that are more challenging than the ones in existing datasets. Empirical results show that our method outperforms current state-of-the-art methods by a large margin. Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs (and vice versa). The source code can be found at https://github.com/thunlp/EREN.

2023

pdf bib
READIN: A Chinese Multi-Task Benchmark with Realistic and Diverse Input Noises
Chenglei Si | Zhengyan Zhang | Yingfa Chen | Xiaozhi Wang | Zhiyuan Liu | Maosong Sun
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

For many real-world applications, the user-generated inputs usually contain various noises due to speech recognition errors caused by linguistic variations or typographical errors (typos). Thus, it is crucial to test model performance on data with realistic input noises to ensure robustness and fairness. However, little study has been done to construct such benchmarks for Chinese, where various language-specific input noises happen in the real world. In order to fill this important gap, we construct READIN: a Chinese multi-task benchmark with REalistic And Diverse Input Noises. READIN contains four diverse tasks and requests annotators to re-enter the original test data with two commonly used Chinese input methods: Pinyin input and speech input. We designed our annotation pipeline to maximize diversity, for example by instructing the annotators to use diverse input method editors (IMEs) for keyboard noises and recruiting speakers from diverse dialectical groups for speech noises. We experiment with a series of strong pretrained language models as well as robust training methods, we find that these models often suffer significant performance drops on READIN even with robustness methods like data augmentation. As the first large-scale attempt in creating a benchmark with noises geared towards user-generated inputs, we believe that READIN serves as an important complement to existing Chinese NLP benchmarks. The source code and dataset can be obtained from https://github.com/thunlp/READIN.

pdf bib
Sub-Character Tokenization for Chinese Pretrained Language Models
Chenglei Si | Zhengyan Zhang | Yingfa Chen | Fanchao Qi | Xiaozhi Wang | Zhiyuan Liu | Yasheng Wang | Qun Liu | Maosong Sun
Transactions of the Association for Computational Linguistics, Volume 11

Tokenization is fundamental to pretrained language models (PLMs). Existing tokenization methods for Chinese PLMs typically treat each character as an indivisible token. However, they ignore the unique feature of the Chinese writing system where additional linguistic information exists below the character level, i.e., at the sub-character level. To utilize such information, we propose sub-character (SubChar for short) tokenization. Specifically, we first encode the input text by converting each Chinese character into a short sequence based on its glyph or pronunciation, and then construct the vocabulary based on the encoded text with sub-word segmentation. Experimental results show that SubChar tokenizers have two main advantages over existing tokenizers: 1) They can tokenize inputs into much shorter sequences, thus improving the computational efficiency. 2) Pronunciation-based SubChar tokenizers can encode Chinese homophones into the same transliteration sequences and produce the same tokenization output, hence being robust to homophone typos. At the same time, models trained with SubChar tokenizers perform competitively on downstream tasks. We release our code and models at https://github.com/thunlp/SubCharTokenization to facilitate future work.

2022

pdf bib
BMCook: A Task-agnostic Compression Toolkit for Big Models
Zhengyan Zhang | Baitao Gong | Yingfa Chen | Xu Han | Guoyang Zeng | Weilin Zhao | Yanxu Chen | Zhiyuan Liu | Maosong Sun
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Recently, pre-trained language models (PLMs) have achieved great success on various NLP tasks and have shown a trend of exponential growth in model size. To alleviate the unaffordable computational costs brought by the size growth, model compression has been widely explored. Existing efforts have achieved promising results in compressing medium-sized models for specific tasks, while task-agnostic compression for big models with over billions of parameters is rarely studied. Task-agnostic compression can provide an efficient and versatile big model for both prompting and delta tuning, leading to a more general impact than task-specific compression. Hence, we introduce a task-agnostic compression toolkit BMCook for big models. In BMCook, we implement four representative compression methods, including quantization, pruning, distillation, and MoEfication. Developers can easily combine these methods towards better efficiency. To evaluate BMCook, we apply it to compress T5-3B (a PLM with 3 billion parameters). We achieve nearly 12x efficiency improvement while maintaining over 97% of the original T5-3B performance on three typical NLP benchmarks. Moreover, the final compressed model also significantly outperforms T5-base (a PLM with 220 million parameters), which has a similar computational cost. BMCook is publicly available at https://github.com/OpenBMB/BMCook.