Watermarking enables people to determine whether the text is generated by a specific model. It injects a unique signature based on the “green-red” list that can be tracked during detection, where the words in green lists are encouraged to be generated. Recent researchers propose to fix the green/red lists or increase the proportion of green tokens to defend against paraphrasing attacks. However, these methods cause degradation of text quality due to semantic disparities between the watermarked text and the unwatermarked text. In this paper, we propose a semantic-aware watermark method that considers contexts to generate a semantic-aware key to split a semantically balanced green/red list for watermark injection. The semantic balanced list reduces the performance drop due to adding bias on green lists. To defend against paraphrasing attacks, we generate the watermark key considering the semantics of contexts via locally sensitive hashing. To improve the text quality, we propose to split green/red lists considering semantics to enable the green list to cover almost all semantics. We also dynamically adapt the bias to balance text quality and robustness. The experiments show our advantages in both robustness and text quality comparable to existing baselines.
Unsupervised text style transfer aims to modify the style of a sentence while preserving its content without parallel corpora. Existing approaches attempt to separate content from style, but some words contain both content and style information. It makes them difficult to disentangle, where unsatisfactory disentanglement results in the loss of the content information or the target style. To address this issue, researchers adopted a “cycle reconstruction” mechanism to maintain content information, but it is still hard to achieve satisfactory content preservation due to incomplete disentanglement. In this paper, we propose a new disentanglement-based method, StyleFlow, which effectively avoids the loss of contents through a better cycle reconstruction via a reversible encoder. The reversible encoder is a normalizing flow that can not only produce output given input but also infer the exact input given the output reversely. We design a stack of attention-aware coupling layers, where each layer is reversible and adopts the attention mechanism to improve the content-style disentanglement. Moreover, we propose a data augmentation method based on normalizing flow to enhance the training data. Our experiments on sentiment transfer and formality transfer tasks show that StyleFlow outperforms strong baselines on both content preservation and style transfer.
Building models of natural language processing (NLP) is challenging in low-resource scenarios where limited data are available. Optimization-based meta-learning algorithms achieve promising results in low-resource scenarios by adapting a well-generalized model initialization to handle new tasks. Nonetheless, these approaches suffer from the memorization overfitting issue, where the model tends to memorize the meta-training tasks while ignoring support sets when adapting to new tasks. To address this issue, we propose a memory imitation meta-learning (MemIML) method that enhances the model’s reliance on support sets for task adaptation. Specifically, we introduce a task-specific memory module to store support set information and construct an imitation module to force query sets to imitate the behaviors of support sets stored in the memory. A theoretical analysis is provided to prove the effectiveness of our method, and empirical results also demonstrate that our method outperforms competitive baselines on both text classification and generation tasks.
Emotional conversation systems generate responses for the input queries considering the speaker’s emotions in a conversation. Existing emotional conversation systems output emotional responses according to either a given emotion or the user’s emotion reflected in the input queries. Following a given emotion may lead to an emotional drift between the given emotion and the conversation state, and following only the user’s emotion may aggravate the user’s negative feelings if users suffer from a negative mood. In this paper, we propose to generate empathetic responses catering to the user’s emotions while leading the conversation to be emotionally positive. Particularly, by abstracting the conversation corpus, we extract and store the different responding strategies for different users’ emotions and conversational topics into a memory. We encourage positive emotions in conversation via a sentiment evaluator. We model the memory outputs with a Gaussian mixture distribution and sample a final responding strategy from the distribution. The strategy acts as a condition to a transformer model to generate responses. The experiments verify our model surpasses the baseline methods in appropriateness, diversity, and generating emotionally positive responses.
Neural conversation models are known to generate appropriate but non-informative responses in general. A scenario where informativeness can be significantly enhanced is Conversing by Reading (CbR), where conversations take place with respect to a given external document. In previous work, the external document is utilized by (1) creating a context-aware document memory that integrates information from the document and the conversational context, and then (2) generating responses referring to the memory. In this paper, we propose to create the document memory with some anticipated responses in mind. This is achieved using a teacher-student framework. The teacher is given the external document, the context, and the ground-truth response, and learns how to build a response-aware document memory from three sources of information. The student learns to construct a response-anticipated document memory from the first two sources, and teacher’s insight on memory creation. Empirical results show that our model outperforms the previous state-of-the-art for the CbR task.
Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems. Existing methods tend to use the meta-learning framework which pre-trains the parameters on all non-target tasks then fine-tunes on the target task. However, fine-tuning distinguishes tasks from the parameter perspective but ignores the model-structure perspective, resulting in similar dialogue models for different tasks. In this paper, we propose an algorithm that can customize a unique dialogue model for each task in the few-shot setting. In our approach, each dialogue model consists of a shared module, a gating module, and a private module. The first two modules are shared among all the tasks, while the third one will differentiate into different network structures to better capture the characteristics of the corresponding task. The extensive experiments on two datasets show that our method outperforms all the baselines in terms of task consistency, response quality, and diversity.
Neural conversation systems, typically using sequence-to-sequence (seq2seq) models, are showing promising progress recently. However, traditional seq2seq suffer from a severe weakness: during beam search decoding, they tend to rank universal replies at the top of the candidate list, resulting in the lack of diversity among candidate replies. Maximum Marginal Relevance (MMR) is a ranking algorithm that has been widely used for subset selection. In this paper, we propose the MMR-BS decoding method, which incorporates MMR into the beam search (BS) process of seq2seq. The MMR-BS method improves the diversity of generated replies without sacrificing their high relevance with the user-issued query. Experiments show that our proposed model achieves the best performance among other comparison methods.
Generative conversational systems are attracting increasing attention in natural language processing (NLP). Recently, researchers have noticed the importance of context information in dialog processing, and built various models to utilize context. However, there is no systematic comparison to analyze how to use context effectively. In this paper, we conduct an empirical study to compare various models and investigate the effect of context information in dialog systems. We also propose a variant that explicitly weights context vectors by context-query relevance, outperforming the other baselines.
Using neural networks to generate replies in human-computer dialogue systems is attracting increasing attention over the past few years. However, the performance is not satisfactory: the neural network tends to generate safe, universally relevant replies which carry little meaning. In this paper, we propose a content-introducing approach to neural network-based generative dialogue systems. We first use pointwise mutual information (PMI) to predict a noun as a keyword, reflecting the main gist of the reply. We then propose seq2BF, a “sequence to backward and forward sequences” model, which generates a reply containing the given keyword. Experimental results show that our approach significantly outperforms traditional sequence-to-sequence models in terms of human evaluation and the entropy measure, and that the predicted keyword can appear at an appropriate position in the reply.