Empathetic conversation is a crucial characteristic in daily conversations between individuals. Nowadays, Large Language models (LLMs) have shown outstanding performance in generating empathetic responses. Knowledge bases like COMET can assist LLMs in mitigating illusions and enhancing the understanding of users’ intentions and emotions. However, models remain heavily reliant on fixed knowledge bases and unrestricted incorporation of external knowledge can introduce noise. Tool learning is a flexible end-to-end approach that assists LLMs in handling complex problems. In this paper, we propose Emotional Knowledge Tool Calling (EKTC) framework, which encapsulates the commonsense knowledge bases as empathetic tools, enabling LLMs to integrate external knowledge flexibly through tool calling. In order to adapt the models to the new task, we construct a novel dataset TOOL-ED based on the EMPATHETICDIALOGUE (ED) dataset. We validate EKTC on the ED dataset, and the experimental results demonstrate that our framework can enhance the ability of LLMs to generate empathetic responses effectively. Our code is available at https://anonymous.4open.science/r/EKTC-3FEF.
Stickers, while widely recognized for enhancing empathetic communication in online interactions, remain underexplored in current empathetic dialogue research, notably due to the challenge of a lack of comprehensive datasets. In this paper, we introduce the Agent for STICKERCONV (Agent4SC), which uses collaborative agent interactions to realistically simulate human behavior with sticker usage, thereby enhancing multimodal empathetic communication. Building on this foundation, we develop a multimodal empathetic dialogue dataset, STICKERCONV, comprising 12.9K dialogue sessions, 5.8K unique stickers, and 2K diverse conversational scenarios. This dataset serves as a benchmark for multimodal empathetic generation. To advance further, we propose PErceive and Generate Stickers (PEGS), a multimodal empathetic response generation framework, complemented by a comprehensive set of empathy evaluation metrics based on LLM. Our experiments demonstrate PEGS’s effectiveness in generating contextually relevant and emotionally resonant multimodal empathetic responses, contributing to the advancement of more nuanced and engaging empathetic dialogue systems.
Full-parameter fine-tuning (FPFT) has become the go-to choice for adapting language models (LMs) to downstream tasks due to its excellent performance. As LMs grow in size, fine-tuning the full parameters of LMs requires a prohibitively large amount of GPU memory. Existing approaches utilize zeroth-order optimizer to conserve GPU memory, which potentially compromises the performance of LMs as non-zero order optimizers tend to converge more readily on most downstream tasks. We propose a novel, memory-efficient, optimizer-independent, end-to-end hierarchical fine-tuning strategy, HiFT, which only updates a subset of parameters at each training step. HiFT significantly reduces the amount of gradients and optimizer state parameters residing in GPU memory at the same time, thereby reducing GPU memory usage. Our results demonstrate that: (1) HiFT achieves comparable performance with parameter-efficient fine-tuning and standard FPFT. (2) Results on six models show that HiFT reduces the number of trainable parameters by about 89.18% on average compared to FPFT. (3) HiFT supports FPFT of 7B models for 24G GPU memory devices under mixed precision without using any memory saving techniques. (4) HiFT supports various optimizers including AdamW, AdaGrad, SGD, etc. The source code link is https://github.com/misonsky/HiFT.