Conventional Knowledge Graph Reasoning (KGR) models learn the embeddings of KG components over the structure of KGs, but their performances are limited when the KGs are severely incomplete. Recent LLM-enhanced KGR models input KG structural information into LLMs. However, they require fine-tuning on open-source LLMs and are not applicable to closed-source LLMs. Therefore, in this paper, to leverage the knowledge in LLMs without fine-tuning to assist and enhance conventional KGR models, we propose a new three-stage pipeline, including knowledge alignment, KG reasoning and entity reranking. Specifically, in the alignment stage, we propose three strategies to align the knowledge in LLMs to the KG schema by explicitly associating unconnected nodes with semantic relations. Based on the enriched KGs, we train structure-aware KGR models to integrate aligned knowledge to original knowledge existing in KGs. In the reranking stage, after obtaining the results of KGR models, we rerank the top-scored entities with LLMs to recall correct answers further. Experiments show our pipeline can enhance the KGR performance in both incomplete and general situations. Code and datasets are available.
Real-world Temporal Knowledge Graphs keep growing with time and new entities and facts emerge continually, necessitating a model that can extrapolate to future timestamps and transfer knowledge for new components. Therefore, our work first dives into this more realistic issue, lifelong TKG reasoning, where existing methods can only address part of the challenges. Specifically, we formulate lifelong TKG reasoning as a temporal-path-based reinforcement learning (RL) framework. Then, we add temporal displacement into the action space of RL to extrapolate for the future and further propose a temporal-rule-based reward shaping to guide the training. To transfer and update knowledge, we design a new edge-aware message passing module, where the embeddings of new entities and edges are inductive. We conduct extensive experiments on three newly constructed benchmarks for lifelong TKG reasoning. Experimental results show the outperforming effectiveness of our model against all well-adapted baselines.
With the rapid development of automatic fake news detection technology, fact extraction and verification (FEVER) has been attracting more attention. The task aims to extract the most related fact evidences from millions of open-domain Wikipedia documents and then verify the credibility of corresponding claims. Although several strong models have been proposed for the task and they have made great process, we argue that they fail to utilize multi-view contextual information and thus cannot obtain better performance. In this paper, we propose to integrate multi-view contextual information (IMCI) for fact extraction and verification. For each evidence sentence, we define two kinds of context, i.e. intra-document context and inter-document context. Intra-document context consists of the document title and all the other sentences from the same document. Inter-document context consists of all other evidences which may come from different documents. Then we integrate the multi-view contextual information to encode the evidence sentences to handle the task. Our experimental results on FEVER 1.0 shared task show that our IMCI framework makes great progress on both fact extraction and verification, and achieves state-of-the-art performance with a winning FEVER score of 73.96% and label accuracy of 77.25% on the online blind test set. We also conduct ablation study to detect the impact of multi-view contextual information.
Recently, Transformer has achieved great success in Chinese named entity recognition (NER) owing to its good parallelism and ability to model long-range dependencies, which utilizes self-attention to encode context. However, the fully connected way of self-attention may scatter the attention distribution and allow some irrelevant character information to be integrated, leading to entity boundaries being misidentified. In this paper, we propose a data-driven Adaptive Threshold Selective Self-Attention (ATSSA) mechanism that aims to dynamically select the most relevant characters to enhance the Transformer architecture for Chinese NER. In ATSSA, the attention score threshold of each query is automatically generated, and characters with attention score higher than the threshold are selected by the query while others are discarded, so as to address irrelevant attention integration. Experiments on four benchmark Chinese NER datasets show that the proposed ATSSA brings 1.68 average F1 score improvements to the baseline model and achieves state-of-the-art performance.
Temporal relation extraction aims to extract temporal relations between event pairs, which is crucial for natural language understanding. Few efforts have been devoted to capturing the global features. In this paper, we propose RSGT: Relational Structure Guided Temporal Relation Extraction to extract the relational structure features that can fit for both inter-sentence and intra-sentence relations. Specifically, we construct a syntactic-and-semantic-based graph to extract relational structures. Then we present a graph neural network based model to learn the representation of this graph. After that, an auxiliary temporal neighbor prediction task is used to fine-tune the encoder to get more comprehensive node representations. Finally, we apply a conflict detection and correction algorithm to adjust the wrongly predicted labels. Experiments on two well-known datasets, MATRES and TB-Dense, demonstrate the superiority of our method (2.3% F1 improvement on MATRES, 3.5% F1 improvement on TB-Dense).
Argumentation mining on essays is a new challenging task in natural language processing, which aims to identify the types and locations of argumentation components. Recent research mainly models the task as a sequence tagging problem and deal with all the argumentation components at word level. However, this task is not scale-independent. Some types of argumentation components which serve as core opinions on essays or paragraphs, are at essay level or paragraph level. Sequence tagging method conducts reasoning by local context words, and fails to effectively mine these components. To this end, we propose a multi-scale argumentation mining model, where we respectively mine different types of argumentation components at corresponding levels. Besides, an effective coarse-to-fine argumentation fusion mechanism is proposed to further improve the performance. We conduct a serial of experiments on the Persuasive Essay dataset (PE2.0). Experimental results indicate that our model outperforms existing models on mining all types of argumentation components.