Yongkang Liu

Also published as: YongKang Liu


2024

pdf bib
HiFT: A Hierarchical Full Parameter Fine-Tuning Strategy
YongKang Liu | Yiqun Zhang | Qian Li | Tong Liu | Shi Feng | Daling Wang | Yifei Zhang | Hinrich Schuetze
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Full-parameter fine-tuning (FPFT) has become the go-to choice for adapting language models (LMs) to downstream tasks due to its excellent performance. As LMs grow in size, fine-tuning the full parameters of LMs requires a prohibitively large amount of GPU memory. Existing approaches utilize zeroth-order optimizer to conserve GPU memory, which potentially compromises the performance of LMs as non-zero order optimizers tend to converge more readily on most downstream tasks. We propose a novel, memory-efficient, optimizer-independent, end-to-end hierarchical fine-tuning strategy, HiFT, which only updates a subset of parameters at each training step. HiFT significantly reduces the amount of gradients and optimizer state parameters residing in GPU memory at the same time, thereby reducing GPU memory usage. Our results demonstrate that: (1) HiFT achieves comparable performance with parameter-efficient fine-tuning and standard FPFT. (2) Results on six models show that HiFT reduces the number of trainable parameters by about 89.18% on average compared to FPFT. (3) HiFT supports FPFT of 7B models for 24G GPU memory devices under mixed precision without using any memory saving techniques. (4) HiFT supports various optimizers including AdamW, AdaGrad, SGD, etc. The source code link is https://github.com/misonsky/HiFT.

2023

pdf bib
PVGRU: Generating Diverse and Relevant Dialogue Responses via Pseudo-Variational Mechanism
Yongkang Liu | Shi Feng | Daling Wang | Yifei Zhang | Hinrich Schütze
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We investigate response generation for multi-turn dialogue in generative chatbots. Existing generative modelsbased on RNNs (Recurrent Neural Networks) usually employ the last hidden state to summarize the history, which makesmodels unable to capture the subtle variability observed in different dialogues and cannot distinguish the differencesbetween dialogues that are similar in composition. In this paper, we propose Pseudo-Variational Gated Recurrent Unit (PVGRU). The key novelty of PVGRU is a recurrent summarizing variable thataggregates the accumulated distribution variations of subsequences. We train PVGRU without relying on posterior knowledge, thus avoiding the training-inference inconsistency problem. PVGRU can perceive subtle semantic variability through summarizing variables that are optimized by two objectives we employ for training: distribution consistency and reconstruction. In addition, we build a Pseudo-Variational Hierarchical Dialogue(PVHD) model based on PVGRU. Experimental results demonstrate that PVGRU can broadly improve the diversity andrelevance of responses on two benchmark datasets.

2022

pdf bib
MulZDG: Multilingual Code-Switching Framework for Zero-shot Dialogue Generation
Yongkang Liu | Shi Feng | Daling Wang | Yifei Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Building dialogue generation systems in a zero-shot scenario remains a huge challenge, since the typical zero-shot approaches in dialogue generation rely heavily on large-scale pre-trained language generation models such as GPT-3 and T5. The research on zero-shot dialogue generation without cumbersome language models is limited due to lacking corresponding parallel dialogue corpora. In this paper, we propose a simple but effective Multilingual learning framework for Zero-shot Dialogue Generation (dubbed as MulZDG) that can effectively transfer knowledge from an English corpus with large-scale training samples to a non-English corpus with zero samples. Besides, MulZDG can be viewed as a multilingual data augmentation method to improve the performance of the resource-rich language. First, we construct multilingual code-switching dialogue datasets via translation utterances randomly selected from monolingual English datasets. Then we employ MulZDG to train a unified multilingual dialogue model based on the code-switching datasets. The MulZDG can conduct implicit semantic alignment between different languages. Experiments on DailyDialog and DSTC7 datasets demonstrate that MulZDG not only achieve competitive performance under zero-shot case compared to training with sufficient examples but also greatly improve the performance of the source language.

pdf bib
DialogConv: A Lightweight Fully Convolutional Network for Multi-view Response Selection
Yongkang Liu | Shi Feng | Wei Gao | Daling Wang | Yifei Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Current end-to-end retrieval-based dialogue systems are mainly based on Recurrent Neural Networks or Transformers with attention mechanisms. Although promising results have been achieved, these models often suffer from slow inference or huge number of parameters. In this paper, we propose a novel lightweight fully convolutional architecture, called DialogConv, for response selection. DialogConv is exclusively built on top of convolution to extract matching features of context and response. Dialogues are modeled in 3D views, where DialogConv performs convolution operations on embedding view, word view and utterance view to capture richer semantic information from multiple contextual views. On the four benchmark datasets, compared with state-of-the-art baselines, DialogConv is on average about 8.5x smaller in size, and 79.39x and 10.64x faster on CPU and GPU devices, respectively. At the same time, DialogConv achieves the competitive effectiveness of response selection.

2018

pdf bib
Neural Relation Classification with Text Descriptions
Feiliang Ren | Di Zhou | Zhihui Liu | Yongcheng Li | Rongsheng Zhao | Yongkang Liu | Xiaobo Liang
Proceedings of the 27th International Conference on Computational Linguistics

Relation classification is an important task in natural language processing fields. State-of-the-art methods usually concentrate on building deep neural networks based classification models on the training data in which the relations of the labeled entity pairs are given. However, these methods usually suffer from the data sparsity issue greatly. On the other hand, we notice that it is very easily to obtain some concise text descriptions for almost all of the entities in a relation classification task. The text descriptions can provide helpful supplementary information for relation classification. But they are ignored by most of existing methods. In this paper, we propose DesRC, a new neural relation classification method which integrates entities’ text descriptions into deep neural networks models. We design a two-level attention mechanism to select the most useful information from the “intra-sentence” aspect and the “cross-sentence” aspect. Besides, the adversarial training method is also used to further improve the classification per-formance. Finally, we evaluate the proposed method on the SemEval 2010 dataset. Extensive experiments show that our method achieves much better experimental results than other state-of-the-art relation classification methods.