Yubin Zheng
2024
Investigating Multi-Hop Factual Shortcuts in Knowledge Editing of Large Language Models
Tianjie Ju
|
Yijin Chen
|
Xinwei Yuan
|
Zhuosheng Zhang
|
Wei Du
|
Yubin Zheng
|
Gongshen Liu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent work has showcased the powerful capability of large language models (LLMs) in recalling knowledge and reasoning. However, the reliability of LLMs in combining these two capabilities into reasoning through multi-hop facts has not been widely explored. This paper systematically investigates the possibilities for LLMs to utilize shortcuts based on direct connections between the initial and terminal entities of multi-hop knowledge. We first explore the existence of factual shortcuts through Knowledge Neurons, revealing that: (i) the strength of factual shortcuts is highly correlated with the frequency of co-occurrence of initial and terminal entities in the pre-training corpora; (ii) few-shot prompting leverage more shortcuts in answering multi-hop questions compared to chain-of-thought prompting. Then, we analyze the risks posed by factual shortcuts from the perspective of multi-hop knowledge editing. Analysis shows that approximately 20% of the failures are attributed to shortcuts, and the initial and terminal entities in these failure instances usually have higher co-occurrences in the pre-training corpus. Finally, we propose erasing shortcut neurons to mitigate the associated risks and find that this approach significantly reduces failures in multiple-hop knowledge editing caused by shortcuts. Code is publicly available at https://github.com/Jometeorie/MultiHopShortcuts.
2023
Is Continuous Prompt a Combination of Discrete Prompts? Towards a Novel View for Interpreting Continuous Prompts
Tianjie Ju
|
Yubin Zheng
|
Hanyi Wang
|
Haodong Zhao
|
Gongshen Liu
Findings of the Association for Computational Linguistics: ACL 2023
The broad adoption of continuous prompts has brought state-of-the-art results on a diverse array of downstream natural language processing (NLP) tasks. Nonetheless, little attention has been paid to the interpretability and transferability of continuous prompts. Faced with the challenges, we investigate the feasibility of interpreting continuous prompts as the weighting of discrete prompts by jointly optimizing prompt fidelity and downstream fidelity. Our experiments show that: (1) one can always find a combination of discrete prompts as the replacement of continuous prompts that performs well on downstream tasks; (2) our interpretable framework faithfully reflects the reasoning process of source prompts; (3) our interpretations provide effective readability and plausibility, which is helpful to understand the decision-making of continuous prompts and discover potential shortcuts. Moreover, through the bridge constructed between continuous prompts and discrete prompts using our interpretations, it is promising to implement the cross-model transfer of continuous prompts without extra training signals. We hope this work will lead to a novel perspective on the interpretations of continuous prompts.