2024
pdf
bib
abs
Which Programming Language and What Features at Pre-training Stage Affect Downstream Logical Inference Performance?
Fumiya Uchiyama
|
Takeshi Kojima
|
Andrew Gambardella
|
Qi Cao
|
Yusuke Iwasawa
|
Yutaka Matsuo
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recent large language models (LLMs) have demonstrated remarkable generalization abilities in mathematics and logical reasoning tasks.Prior research indicates that LLMs pre-trained with programming language data exhibit high mathematical and reasoning abilities; however, this causal relationship has not been rigorously tested. Our research aims to verify which programming languages and features during pre-training affect logical inference performance. Specifically, we pre-trained decoder-based language models from scratch using datasets from ten programming languages (e.g., Python, C, Java) and three natural language datasets (Wikipedia, Fineweb, C4) under identical conditions. Thereafter, we evaluated the trained models in a few-shot in-context learning setting on logical reasoning tasks: FLD and bAbi, which do not require commonsense or world knowledge. The results demonstrate that nearly all models trained with programming languages consistently outperform those trained with natural languages, indicating that programming languages contain factors that elicit logic inference performance. In addition, we found that models trained with programming languages exhibit a better ability to follow instructions compared to those trained with natural languages. Further analysis reveals that the depth of Abstract Syntax Trees representing parsed results of programs also affects logical reasoning performance. These findings will offer insights into the essential elements of pre-training for acquiring the foundational abilities of LLMs.
pdf
bib
abs
On the Multilingual Ability of Decoder-based Pre-trained Language Models: Finding and Controlling Language-Specific Neurons
Takeshi Kojima
|
Itsuki Okimura
|
Yusuke Iwasawa
|
Hitomi Yanaka
|
Yutaka Matsuo
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Current decoder-based pre-trained language models (PLMs) successfully demonstrate multilingual capabilities. However, it is unclear how these models handle multilingualism.We analyze the neuron-level internal behavior of multilingual decoder-based PLMs, Specifically examining the existence of neurons that fire “uniquely for each language” within decoder-only multilingual PLMs.We analyze six languages: English, German, French, Spanish, Chinese, and Japanese, and show that language-specific neurons are unique, with a slight overlap (< 5%) between languages. These neurons are mainly distributed in the models’ first and last few layers. This trend remains consistent across languages and models.Additionally, we tamper with less than 1% of the total neurons in each model during inference and demonstrate that tampering with a few language-specific neurons drastically changes the probability of target language occurrence in text generation.
pdf
bib
abs
Language Models Do Hard Arithmetic Tasks Easily and Hardly Do Easy Arithmetic Tasks
Andrew Gambardella
|
Yusuke Iwasawa
|
Yutaka Matsuo
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
The ability (and inability) of large language models (LLMs) to perform arithmetic tasks has been the subject of much theoretical and practical debate. We show that LLMs are frequently able to correctly and confidently predict the first digit of n-digit by m-digit multiplication tasks without using chain of thought reasoning, despite these tasks require compounding operations to solve. Simultaneously, LLMs in practice often fail to correctly or confidently predict the last digit of an n-digit by m-digit multiplication, a task equivalent to 1-digit by 1-digit multiplication which can be easily learned or memorized. We show that the latter task can be solved more robustly when the LLM is conditioned on all of the correct higher-order digits, which on average increases the confidence of the correct last digit on 5-digit by 5-digit multiplication tasks using Llama 2-13B by over 230% (0.13→0.43) and Mistral-7B by 150% (0.22→0.55).
2023
pdf
bib
abs
Unnatural Error Correction: GPT-4 Can Almost Perfectly Handle Unnatural Scrambled Text
Qi Cao
|
Takeshi Kojima
|
Yutaka Matsuo
|
Yusuke Iwasawa
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
While Large Language Models (LLMs) have achieved remarkable performance in many tasks, much about their inner workings remains unclear. In this study, we present novel experimental insights into the resilience of LLMs, particularly GPT-4, when subjected to extensive character-level permutations. To investigate this, we first propose the Scrambled Bench, a suite designed to measure the capacity of LLMs to handle scrambled input, in terms of both recovering scrambled sentences and answering questions given scrambled context. The experimental results indicate that multiple advanced LLMs demonstrate the capability akin to typoglycemia, a phenomenon where humans can understand the meaning of words even when the letters within those words are scrambled, as long as the first and last letters remain in place. More surprisingly, we found that only GPT-4 nearly flawlessly processes inputs with unnatural errors, a task that poses significant challenges for other LLMs and often even for humans. Specifically, GPT-4 can almost perfectly reconstruct the original sentences from scrambled ones, decreasing the edit distance by 95%, even when all letters within each word are entirely scrambled. It is counter-intuitive that LLMs can exhibit such resilience despite severe disruption to input tokenization caused by scrambled text.
2021
pdf
bib
abs
Making Use of Latent Space in Language GANs for Generating Diverse Text without Pre-training
Takeshi Kojima
|
Yusuke Iwasawa
|
Yutaka Matsuo
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
Generating diverse texts is an important factor for unsupervised text generation. One approach is to produce the diversity of texts conditioned by the sampled latent code. Although several generative adversarial networks (GANs) have been proposed thus far, these models still suffer from mode-collapsing if the models are not pre-trained. In this paper, we propose a GAN model that aims to improve the approach to generating diverse texts conditioned by the latent space. The generator of our model uses Gumbel-Softmax distribution for the word sampling process. To ensure that the text is generated conditioned upon the sampled latent code, reconstruction loss is introduced in our objective function. The discriminator of our model iteratively inspects incomplete partial texts and learns to distinguish whether they are real or fake by using the standard GAN objective function. Experimental results using the COCO Image Captions dataset show that, although our model is not pre-trained, the performance of our model is quite competitive with the existing baseline models, which requires pre-training.