Scientific literature understanding tasks have gained significant attention due to their potential to accelerate scientific discovery. Pre-trained language models (LMs) have shown effectiveness in these tasks, especially when tuned via contrastive learning. However, jointly utilizing pre-training data across multiple heterogeneous tasks (e.g., extreme multi-label paper classification, citation prediction, and literature search) remains largely unexplored. To bridge this gap, we propose a multi-task contrastive learning framework, SciMult, with a focus on facilitating common knowledge sharing across different scientific literature understanding tasks while preventing task-specific skills from interfering with each other. To be specific, we explore two techniques – task-aware specialization and instruction tuning. The former adopts a Mixture-of-Experts Transformer architecture with task-aware sub-layers; the latter prepends task-specific instructions to the input text so as to produce task-aware outputs. Extensive experiments on a comprehensive collection of benchmark datasets verify the effectiveness of our task-aware specialization strategy, where we outperform state-of-the-art scientific pre-trained LMs. Code, datasets, and pre-trained models can be found at https://scimult.github.io/.
Scientific knowledge is evolving at an unprecedented rate of speed, with new concepts constantly being introduced from millions of academic articles published every month. In this paper, we introduce a self-supervised end-to-end system, SciConceptMiner, for the automatic capture of emerging scientific concepts from both independent knowledge sources (semi-structured data) and academic publications (unstructured documents). First, we adopt a BERT-based sequence labeling model to predict candidate concept phrases with self-supervision data. Then, we incorporate rich Web content for synonym detection and concept selection via a web search API. This two-stage approach achieves highly accurate (94.7%) concept identification with more than 740K scientific concepts. These concepts are deployed in the Microsoft Academic production system and are the backbone for its semantic search capability.
We focus on a recently deployed system built for summarizing academic articles by concept tagging. The system has shown great coverage and high accuracy of concept identification which could be contributed by the knowledge acquired from millions of publications. Provided with the interpretable concepts and knowledge encoded in a pre-trained neural model, we investigate whether the tagged concepts can be applied to a broader class of applications. We propose transforming the tagged concepts into sparse vectors as representations of academic documents. The effectiveness of the representations is analyzed theoretically by a proposed framework. We also empirically show that the representations can have advantages on academic topic discovery and paper recommendation. On these applications, we reveal that the knowledge encoded in the tagging system can be effectively utilized and can help infer additional features from data with limited information.
The COVID-19 Open Research Dataset (CORD-19) is a growing resource of scientific papers on COVID-19 and related historical coronavirus research. CORD-19 is designed to facilitate the development of text mining and information retrieval systems over its rich collection of metadata and structured full text papers. Since its release, CORD-19 has been downloaded over 200K times and has served as the basis of many COVID-19 text mining and discovery systems. In this article, we describe the mechanics of dataset construction, highlighting challenges and key design decisions, provide an overview of how CORD-19 has been used, and describe several shared tasks built around the dataset. We hope this resource will continue to bring together the computing community, biomedical experts, and policy makers in the search for effective treatments and management policies for COVID-19.
To enable efficient exploration of Web-scale scientific knowledge, it is necessary to organize scientific publications into a hierarchical concept structure. In this work, we present a large-scale system to (1) identify hundreds of thousands of scientific concepts, (2) tag these identified concepts to hundreds of millions of scientific publications by leveraging both text and graph structure, and (3) build a six-level concept hierarchy with a subsumption-based model. The system builds the most comprehensive cross-domain scientific concept ontology published to date, with more than 200 thousand concepts and over one million relationships.