Zhuoma GongQue
2024
How Do Your Code LLMs perform? Empowering Code Instruction Tuning with Really Good Data
Yejie Wang
|
Keqing He
|
Dayuan Fu
|
Zhuoma GongQue
|
Heyang Xu
|
Yanxu Chen
|
Zhexu Wang
|
Yujia Fu
|
Guanting Dong
|
Muxi Diao
|
Jingang Wang
|
Mengdi Zhang
|
Xunliang Cai
|
Weiran Xu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recently, there has been a growing interest in studying how to construct better code instruction tuning data. However, we observe Code models trained with these datasets exhibit high performance on HumanEval but perform worse on other benchmarks such as LiveCodeBench. Upon further investigation, we find that many datasets suffer from severe data leakage. After cleaning up most of the leaked data, some well-known high-quality datasets perform poorly. This discovery reveals a new challenge: identifying which dataset genuinely qualify as high-quality code instruction data. To address this, we propose an efficient code data pruning strategy for selecting good samples. Our approach is based on three dimensions: instruction complexity, response quality, and instruction diversity. Based on our selected data, we present XCoder, a family of models finetuned from LLaMA3. Our experiments show Xcoder achieves new state-of-the-art performance using fewer training data, which verify the effectiveness of our data strategy. Moreover, we perform a comprehensive analysis on the data composition and find existing code datasets have different characteristics according to their construction methods, which provide new insights for future code LLMs.
2023
DemoNSF: A Multi-task Demonstration-based Generative Framework for Noisy Slot Filling Task
Guanting Dong
|
Tingfeng Hui
|
Zhuoma GongQue
|
Jinxu Zhao
|
Daichi Guo
|
Gang Zhao
|
Keqing He
|
Weiran Xu
Findings of the Association for Computational Linguistics: EMNLP 2023
Recently, prompt-based generative frameworks have shown impressive capabilities in sequence labeling tasks. However, in practical dialogue scenarios, relying solely on simplistic templates and traditional corpora presents a challenge for these methods in generalizing to unknown input perturbations. To address this gap, we propose a multi-task demonstration-based generative framework for noisy slot filling, named DemoNSF. Specifically, we introduce three noisy auxiliary tasks, namely noisy recovery (NR), random mask (RM), and hybrid discrimination (HD), to implicitly capture semantic structural information of input perturbations at different granularities. In the downstream main task, we design a noisy demonstration construction strategy for the generative framework, which explicitly incorporates task-specific information and perturbed distribution during training and inference. Experiments on two benchmarks demonstrate that DemoNSF outperforms all baseline methods and achieves strong generalization. Further analysis provides empirical guidance for the practical application of generative frameworks. Our code is released at https://github.com/dongguanting/Demo-NSF.
Search
Co-authors
- Keqing He 2
- Guanting Dong 2
- Weiran Xu 2
- Yejie Wang 1
- Dayuan Fu 1
- show all...