Zonglin Di
2024
Navigation as Attackers Wish? Towards Building Robust Embodied Agents under Federated Learning
Yunchao Zhang
|
Zonglin Di
|
Kaiwen Zhou
|
Cihang Xie
|
Xin Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Federated embodied agent learning protects the data privacy of individual visual environments by keeping data locally at each client (the individual environment) during training. However, since the local data is inaccessible to the server under federated learning, attackers may easily poison the training data of the local client to build a backdoor in the agent without notice. Deploying such an agent raises the risk of potential harm to humans, as the attackers may easily navigate and control the agent as they wish via the backdoor. Towards Byzantine-robust federated embodied agent learning, in this paper, we study the attack and defense for the task of vision-and-language navigation (VLN), where the agent is required to follow natural language instructions to navigate indoor environments. First, we introduce a simple but effective attack strategy, Navigation as Wish (NAW), in which the malicious client manipulates local trajectory data to implant a backdoor into the global model. Results on two VLN datasets (R2R and RxR) show that NAW can easily navigate the deployed VLN agent regardless of the language instruction, without affecting its performance on normal test sets. Then, we propose a new Prompt-Based Aggregation (PBA) to defend against the NAW attack in federated VLN, which provides the server with a ”prompt” of the vision-and-language alignment variance between the benign and malicious clients so that they can be distinguished during training. We validate the effectiveness of the PBA method on protecting the global model from the NAW attack, which outperforms other state-of-the-art defense methods by a large margin in the defense metrics on R2R and RxR.
2023
T2IAT: Measuring Valence and Stereotypical Biases in Text-to-Image Generation
Jialu Wang
|
Xinyue Liu
|
Zonglin Di
|
Yang Liu
|
Xin Wang
Findings of the Association for Computational Linguistics: ACL 2023
*Warning: This paper contains several contents that may be toxic, harmful, or offensive.*In the last few years, text-to-image generative models have gained remarkable success in generating images with unprecedented quality accompanied by a breakthrough of inference speed. Despite their rapid progress, human biases that manifest in the training examples, particularly with regard to common stereotypical biases, like gender and skin tone, still have been found in these generative models. In this work, we seek to measure more complex human biases exist in the task of text-to-image generations. Inspired by the well-known Implicit Association Test (IAT) from social psychology, we propose a novel Text-to-Image Association Test (T2IAT) framework that quantifies the implicit stereotypes between concepts and valence, and those in the images. We replicate the previously documented bias tests on generative models, including morally neutral tests on flowers and insects as well as demographic stereotypical tests on diverse social attributes. The results of these experiments demonstrate the presence of complex stereotypical behaviors in image generations.