pdf
bib
Actes de la 28e Conférence sur le Traitement Automatique des Langues Naturelles. Atelier DÉfi Fouille de Textes (DEFT)
Cyril Grouin
|
Natalia Grabar
|
Gabriel Illouz
pdf
bib
abs
Classification de cas cliniques et évaluation automatique de réponses d’étudiants : présentation de la campagne DEFT 2021 (Clinical cases classification and automatic evaluation of student answers : Presentation of the DEFT 2021 Challenge)
Cyril Grouin
|
Natalia Grabar
|
Gabriel Illouz
Le défi fouille de textes (DEFT) est une campagne d’évaluation annuelle francophone. Nous présentons les corpus et baselines élaborées pour trois tâches : (i) identifier le profil clinique de patients décrits dans des cas cliniques, (ii) évaluer automatiquement les réponses d’étudiants sur des questionnaires en ligne (Moodle) à partir de la correction de l’enseignant, et (iii) poursuivre une évaluation de réponses d’étudiants à partir de réponses déjà évaluées par l’enseignant. Les résultats varient de 0,394 à 0,814 de F-mesure sur la première tâche (7 équipes), de 0,448 à 0,682 de précision sur la deuxième (3 équipes), et de 0,133 à 0,510 de précision sur la dernière (3 équipes).
pdf
bib
abs
Classification multi-label de cas cliniques avec CamemBERT (Multi-label classification of clinical cases with CamemBERT )
Alexandre Bailly
|
Corentin Blanc
|
Thierry Guillotin
La quantité de documents textuels médicaux allant grandissant, la nécessité d’en extraire automatiquement des informations concernant des patients devient de plus en plus grande. La prédiction du profil clinique permet de gagner du temps pour le praticien tout en extrayant l’essentiel de l’information concernant un patient. Avec l’explosion du nombre de documents (médicaux ou non), des modèles pré-entraînés tels que BERT pour l’anglais ou CamemBERT pour le français ont émergé. L’utilisation de ces modèles permet d’encoder contextuellement du texte afin de l’utiliser dans des réseaux neuronaux pour notamment prédire des profils cliniques. Cet article vise à comparer différentes méthodes de prédiction de profil clinique en se basant sur l’utilisation de CamemBERT. Dans un premier temps, uniquement du texte provenant de documents médicaux a été utilisé. Dans un second temps, des entités nommées ont été injectées en plus du texte par concaténation ou par sommation pondérée. Les résultats ont montré un succès limité et dépendant de la prévalence des chapitres à prédire dans le corpus ainsi qu’une dégradation des performances lors de l’ajout des entités nommées.
pdf
bib
abs
Classification multilabel de concepts médicaux pour l’identification du profil clinique du patient (Multilabel classification of medical concepts for patient’s clinical profile identification )
Christel Gérardin
|
Pascal Vaillant
|
Perceval Wajsbürt
|
Clément Gilavert
|
Ali Bellamine
|
Emmanuelle Kempf
|
Xavier Tannier
La première tâche du Défi fouille de textes 2021 a consisté à extraire automatiquement, à partir de cas cliniques, les phénotypes pathologiques des patients regroupés par tête de chapitre du MeSH-maladie. La solution présentée est celle d’un classifieur multilabel basé sur un transformer. Deux transformers ont été utilisés : le camembert-large classique (run 1) et le camembert-large fine-tuné (run 2) sur des articles biomédicaux français en accès libre. Nous avons également proposé un modèle « bout-enbout », avec une première phase d’extraction d’entités nommées également basée sur un transformer de type camembert-large et un classifieur de genre sur un modèle Adaboost. Nous obtenons un très bon rappel et une précision correcte, pour une F1-mesure autour de 0,77 pour les trois runs. La performance du modèle « bout-en-bout » est similaire aux autres méthodes.
pdf
bib
abs
DEFT 2021: Évaluation automatique de réponses courtes, une approche basée sur la sélection de traits lexicaux et augmentation de données (DEFT 2021 : Automatic short answer grading, a lexical features selection and data augmentation based approach)
Timothée Poulain
|
Victor Connes
Cet article présente la participation de l’équipe Proofreaders du LS2N au DÉfi Fouille de Textes 2021 (DEFT 2021). La tâche proposée consiste en la poursuite automatique de l’évaluation de réponses courtes d’étudiants (EAQRC) à partir de quelques réponses déjà corrigées par l’enseignant pour chaque énoncé. Une étude comparative de différents traits lexicaux, ainsi qu’une augmentation artificielle de données et de différents modèles de régression pour la notation des réponses courtes est réalisée. Les méthodes sont évaluées en termes de précision, d’erreur quadratique moyenne et de score de corrélation de Spearman. Notre erreur quadratique moyenne varie entre 0.090 et 0.101 et notre précision entre 0.147 et 0.17. Le code source est disponible à l’adresse suivante :
https://github.com/poulain-tim/DEFT_2021
pdf
bib
abs
DOING@DEFT : utilisation de lexiques pour une classification efficace de cas cliniques (In this paper, we present our participation to the DEFT 2021 task 1)
Nicolas Hiot
|
Anne-Lyse Minard
|
Flora Badin
Nous présentons dans cet article notre participation à la tâche 1 de la campagne d’évaluation francophone DEFT 2021, sur l’identification du profil clinique du patient. Nous proposons une méthode évolutive et efficace en temps et en ressources pour la classification de documents médicaux pouvant être facilement adaptée à d’autres domaines de recherche. Notre système a obtenu les meilleures performances sur cette tâche avec une F-mesure de 0,814.
pdf
bib
abs
Identification de profil clinique du patient: Une approche de classification de séquences utilisant des modèles de langage français contextualisés (Identification of patient clinical profiles : A sequence classification approach using contextualised French language models )
Aidan Mannion
|
Thierry Chevalier
|
Didier Schwab
|
Lorraine Goeuriot
Cet article présente un résumé de notre soumission pour Tâche 1 de DEFT 2021. Cette tâche consiste à identifier le profil clinique d’un patient à partir d’une description textuelle de son cas clinique en identifiant les types de pathologie mentionnés dans le texte. Ce travail étudie des approches de classification de texte utilisant des plongements de mots contextualisés en français. À partir d’une base de référence d’un modèle constitué pour la compréhension générale de la langue française, nous utilisons des modèles pré-entraînés avec masked language modelling et affinés à la tâche d’identification, en utilisant un corpus externe de textes cliniques fourni par SOS Médecins, pour développer des ensembles de classifieurs binaires associant les textes cliniques à des catégories de pathologies.
pdf
bib
abs
Mesure de similarité textuelle pour l’évaluation automatique de copies d’étudiants (Textual similarity measurement for automatic evaluation of students’ answers)
Xiaoou Wang
|
Xingyu Liu
|
Yimei Yue
Cet article décrit la participation de l’équipe Nantalco à la tâche 2 du Défi Fouille de Textes 2021 (DEFT) : évaluation automatique de copies d’après une référence existante. Nous avons utilisé principalement des traits basés sur la similarité cosinus des deux vecteurs représentant la similarité textuelle entre des réponses d’étudiant et la référence. Plusieurs types de vecteurs ont été utilisés (vecteur d’occurrences de mots, vecteur tf-idf, embeddings non contextualisés de fastText, embeddings contextualisés de CamemBERT et enfin Sentence Embeddings Multilingues ajustés sur des corpus multilingues). La meilleure performance du concours sur cette tâche a été de 0.682 (précision) et celle de notre équipe 0.639. Cette performance a été obtenue avec les Sentence Embeddings Multilingues alors que celle des embeddings non ajustés ne s’est élevée qu’à 0.55, suggérant que de récents modèles de langues pré-entraînés doivent être fine-tunés afin d’avoir des embeddings adéquats au niveau phrastique.
pdf
bib
abs
Participation d’EDF R&D à DEFT 2021 (EDF R&D Participation to DEFT 2021)
Philippe Suignard
|
Alexandra Benamar
|
Nazim Messous
|
Clément Christophe
|
Marie Jubault
|
Meryl Bothua
Ce papier présente la participation d’EDF R&D à la campagne d’évaluation DEFT 2021. Notre équipe a participé aux deux dernières tâches proposées (T2 et T3), deux tâches sur le calcul de similarité sémantique entre textes courts, et s’est classée 1ère sur ces deux tâches. Cette édition proposait deux nouvelles tâches pour l’évaluation automatique de réponses d’étudiants à des questions d’enseignants. Le corpus se composait d’une centaine d’énoncés en informatique avec la correction de l’enseignant et les réponses d’une cinquantaine d’étudiants en moyenne par question, sur 2 ans. La tâche 2 consistait à évaluer les réponses des étudiants en prenant pour référence la correction produite par l’enseignant et la tâche 3 à évaluer les réponses d’étudiants à partir d’un ensemble composé d’un énoncé et de plusieurs réponses d’étudiants déjà corrigées par l’enseignant.e.
pdf
bib
abs
Participation de Berger-Levrault (BL.Research) à DEFT 2021 : de l’apprentissage des seuils de validation à la classification multi-labels de documents (Berger-Levrault (BL)
Mokhtar Boumedyen Billami
|
Lina Nicolaieff
|
Camille Gosset
|
Christophe Bortolaso
Cet article présente notre participation à l’édition 2021 du DÉfi Fouille de Textes (DEFT) et plus précisément à la première tâche liée à l’identification du profil clinique du patient. Cette tâche consiste à sélectionner, pour un document décrivant l’état d’un patient, les différents types de maladies rencontrées correspondant aux entrées génériques des chapitres du MeSH (Medical Subject Headings). Dans notre travail, nous nous sommes intéressés aux questions suivantes : (1) Comment améliorer les représentations vectorielles de documents, voire de classes ? (2) Comment apprendre des seuils de validation de classes ? Et (3) Une approche combinant apprentissage supervisé et similarité sémantique peut-elle apporter une meilleure performance à un système de classification multi-labels ?
pdf
bib
abs
QUEER@DEFT2021 : Identification du Profil Clinique de Patients et Notation Automatique de Copies d’Étudiants (QUEER@DEFT2021 : Patients Clinical Profile Identification and Automatic Student Grading )
Yoann Dupont
|
Carlos-Emiliano González-Gallardo
|
Gaël Lejeune
|
Alice Millour
|
Jean-Baptiste Tanguy
Nous présentons dans cet article notre contribution aux 3 tâches de la campagne d’évaluation du défi Fouille de Texte 2021. Dans la tâche d’identification de de profil clinique (tâche 1) nous présentons une méthode de recherche d’information basé sur un index dérivé du MeSH. Pour la tâche de notation automatique à partir d’une correction (tâche 2), nous avons expérimenté une méthode de similarité de vecteurs de chaînes de caractères. Pour la tâche de notation à partir de copies déjà notées (tâche 3) nous avons entraîné un réseau de neurones LSTM.