@inproceedings{rippeth-post-2022-additive,
title = "Additive Interventions Yield Robust Multi-Domain Machine Translation Models",
author = "Rippeth, Elijah and
Post, Matt",
booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.wmt-1.14",
pages = "220--232",
abstract = "Additive interventions are a recently-proposed mechanism for controlling target-side attributes in neural machine translation by modulating the encoder{'}s representation of a source sequence as opposed to manipulating the raw source sequence as seen in most previous tag-based approaches. In this work we examine the role of additive interventions in a large-scale multi-domain machine translation setting and compare its performance in various inference scenarios. We find that while the performance difference is small between intervention-based systems and tag-based systems when the domain label matches the test domain, intervention-based systems are robust to label error, making them an attractive choice under label uncertainty. Further, we find that the superiority of single-domain fine-tuning comes under question when training data is scaled, contradicting previous findings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rippeth-post-2022-additive">
<titleInfo>
<title>Additive Interventions Yield Robust Multi-Domain Machine Translation Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elijah</namePart>
<namePart type="family">Rippeth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matt</namePart>
<namePart type="family">Post</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Additive interventions are a recently-proposed mechanism for controlling target-side attributes in neural machine translation by modulating the encoder’s representation of a source sequence as opposed to manipulating the raw source sequence as seen in most previous tag-based approaches. In this work we examine the role of additive interventions in a large-scale multi-domain machine translation setting and compare its performance in various inference scenarios. We find that while the performance difference is small between intervention-based systems and tag-based systems when the domain label matches the test domain, intervention-based systems are robust to label error, making them an attractive choice under label uncertainty. Further, we find that the superiority of single-domain fine-tuning comes under question when training data is scaled, contradicting previous findings.</abstract>
<identifier type="citekey">rippeth-post-2022-additive</identifier>
<location>
<url>https://aclanthology.org/2022.wmt-1.14</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>220</start>
<end>232</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Additive Interventions Yield Robust Multi-Domain Machine Translation Models
%A Rippeth, Elijah
%A Post, Matt
%S Proceedings of the Seventh Conference on Machine Translation (WMT)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F rippeth-post-2022-additive
%X Additive interventions are a recently-proposed mechanism for controlling target-side attributes in neural machine translation by modulating the encoder’s representation of a source sequence as opposed to manipulating the raw source sequence as seen in most previous tag-based approaches. In this work we examine the role of additive interventions in a large-scale multi-domain machine translation setting and compare its performance in various inference scenarios. We find that while the performance difference is small between intervention-based systems and tag-based systems when the domain label matches the test domain, intervention-based systems are robust to label error, making them an attractive choice under label uncertainty. Further, we find that the superiority of single-domain fine-tuning comes under question when training data is scaled, contradicting previous findings.
%U https://aclanthology.org/2022.wmt-1.14
%P 220-232
Markdown (Informal)
[Additive Interventions Yield Robust Multi-Domain Machine Translation Models](https://aclanthology.org/2022.wmt-1.14) (Rippeth & Post, WMT 2022)
ACL