Abstract
Additive interventions are a recently-proposed mechanism for controlling target-side attributes in neural machine translation by modulating the encoder’s representation of a source sequence as opposed to manipulating the raw source sequence as seen in most previous tag-based approaches. In this work we examine the role of additive interventions in a large-scale multi-domain machine translation setting and compare its performance in various inference scenarios. We find that while the performance difference is small between intervention-based systems and tag-based systems when the domain label matches the test domain, intervention-based systems are robust to label error, making them an attractive choice under label uncertainty. Further, we find that the superiority of single-domain fine-tuning comes under question when training data is scaled, contradicting previous findings.- Anthology ID:
- 2022.wmt-1.14
- Volume:
- Proceedings of the Seventh Conference on Machine Translation (WMT)
- Month:
- December
- Year:
- 2022
- Address:
- Abu Dhabi, United Arab Emirates (Hybrid)
- Editors:
- Philipp Koehn, Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri, Aurélie Névéol, Mariana Neves, Martin Popel, Marco Turchi, Marcos Zampieri
- Venue:
- WMT
- SIG:
- SIGMT
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 220–232
- Language:
- URL:
- https://aclanthology.org/2022.wmt-1.14
- DOI:
- Bibkey:
- Cite (ACL):
- Elijah Rippeth and Matt Post. 2022. Additive Interventions Yield Robust Multi-Domain Machine Translation Models. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 220–232, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.
- Cite (Informal):
- Additive Interventions Yield Robust Multi-Domain Machine Translation Models (Rippeth & Post, WMT 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.wmt-1.14.pdf
- Video:
- https://aclanthology.org/2022.wmt-1.14.mp4
Export citation
@inproceedings{rippeth-post-2022-additive, title = "Additive Interventions Yield Robust Multi-Domain Machine Translation Models", author = "Rippeth, Elijah and Post, Matt", editor = {Koehn, Philipp and Barrault, Lo{\"\i}c and Bojar, Ond{\v{r}}ej and Bougares, Fethi and Chatterjee, Rajen and Costa-juss{\`a}, Marta R. and Federmann, Christian and Fishel, Mark and Fraser, Alexander and Freitag, Markus and Graham, Yvette and Grundkiewicz, Roman and Guzman, Paco and Haddow, Barry and Huck, Matthias and Jimeno Yepes, Antonio and Kocmi, Tom and Martins, Andr{\'e} and Morishita, Makoto and Monz, Christof and Nagata, Masaaki and Nakazawa, Toshiaki and Negri, Matteo and N{\'e}v{\'e}ol, Aur{\'e}lie and Neves, Mariana and Popel, Martin and Turchi, Marco and Zampieri, Marcos}, booktitle = "Proceedings of the Seventh Conference on Machine Translation (WMT)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.wmt-1.14", pages = "220--232", abstract = "Additive interventions are a recently-proposed mechanism for controlling target-side attributes in neural machine translation by modulating the encoder{'}s representation of a source sequence as opposed to manipulating the raw source sequence as seen in most previous tag-based approaches. In this work we examine the role of additive interventions in a large-scale multi-domain machine translation setting and compare its performance in various inference scenarios. We find that while the performance difference is small between intervention-based systems and tag-based systems when the domain label matches the test domain, intervention-based systems are robust to label error, making them an attractive choice under label uncertainty. Further, we find that the superiority of single-domain fine-tuning comes under question when training data is scaled, contradicting previous findings.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="rippeth-post-2022-additive"> <titleInfo> <title>Additive Interventions Yield Robust Multi-Domain Machine Translation Models</title> </titleInfo> <name type="personal"> <namePart type="given">Elijah</namePart> <namePart type="family">Rippeth</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matt</namePart> <namePart type="family">Post</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-12</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the Seventh Conference on Machine Translation (WMT)</title> </titleInfo> <name type="personal"> <namePart type="given">Philipp</namePart> <namePart type="family">Koehn</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Loïc</namePart> <namePart type="family">Barrault</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ondřej</namePart> <namePart type="family">Bojar</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Fethi</namePart> <namePart type="family">Bougares</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Rajen</namePart> <namePart type="family">Chatterjee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marta</namePart> <namePart type="given">R</namePart> <namePart type="family">Costa-jussà</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christian</namePart> <namePart type="family">Federmann</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mark</namePart> <namePart type="family">Fishel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Alexander</namePart> <namePart type="family">Fraser</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Markus</namePart> <namePart type="family">Freitag</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yvette</namePart> <namePart type="family">Graham</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Roman</namePart> <namePart type="family">Grundkiewicz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Paco</namePart> <namePart type="family">Guzman</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Barry</namePart> <namePart type="family">Haddow</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matthias</namePart> <namePart type="family">Huck</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Antonio</namePart> <namePart type="family">Jimeno Yepes</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tom</namePart> <namePart type="family">Kocmi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">André</namePart> <namePart type="family">Martins</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Makoto</namePart> <namePart type="family">Morishita</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Christof</namePart> <namePart type="family">Monz</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Masaaki</namePart> <namePart type="family">Nagata</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Toshiaki</namePart> <namePart type="family">Nakazawa</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Matteo</namePart> <namePart type="family">Negri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Aurélie</namePart> <namePart type="family">Névéol</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Mariana</namePart> <namePart type="family">Neves</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Martin</namePart> <namePart type="family">Popel</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marco</namePart> <namePart type="family">Turchi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Marcos</namePart> <namePart type="family">Zampieri</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>Association for Computational Linguistics</publisher> <place> <placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Additive interventions are a recently-proposed mechanism for controlling target-side attributes in neural machine translation by modulating the encoder’s representation of a source sequence as opposed to manipulating the raw source sequence as seen in most previous tag-based approaches. In this work we examine the role of additive interventions in a large-scale multi-domain machine translation setting and compare its performance in various inference scenarios. We find that while the performance difference is small between intervention-based systems and tag-based systems when the domain label matches the test domain, intervention-based systems are robust to label error, making them an attractive choice under label uncertainty. Further, we find that the superiority of single-domain fine-tuning comes under question when training data is scaled, contradicting previous findings.</abstract> <identifier type="citekey">rippeth-post-2022-additive</identifier> <location> <url>https://aclanthology.org/2022.wmt-1.14</url> </location> <part> <date>2022-12</date> <extent unit="page"> <start>220</start> <end>232</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Additive Interventions Yield Robust Multi-Domain Machine Translation Models %A Rippeth, Elijah %A Post, Matt %Y Koehn, Philipp %Y Barrault, Loïc %Y Bojar, Ondřej %Y Bougares, Fethi %Y Chatterjee, Rajen %Y Costa-jussà, Marta R. %Y Federmann, Christian %Y Fishel, Mark %Y Fraser, Alexander %Y Freitag, Markus %Y Graham, Yvette %Y Grundkiewicz, Roman %Y Guzman, Paco %Y Haddow, Barry %Y Huck, Matthias %Y Jimeno Yepes, Antonio %Y Kocmi, Tom %Y Martins, André %Y Morishita, Makoto %Y Monz, Christof %Y Nagata, Masaaki %Y Nakazawa, Toshiaki %Y Negri, Matteo %Y Névéol, Aurélie %Y Neves, Mariana %Y Popel, Martin %Y Turchi, Marco %Y Zampieri, Marcos %S Proceedings of the Seventh Conference on Machine Translation (WMT) %D 2022 %8 December %I Association for Computational Linguistics %C Abu Dhabi, United Arab Emirates (Hybrid) %F rippeth-post-2022-additive %X Additive interventions are a recently-proposed mechanism for controlling target-side attributes in neural machine translation by modulating the encoder’s representation of a source sequence as opposed to manipulating the raw source sequence as seen in most previous tag-based approaches. In this work we examine the role of additive interventions in a large-scale multi-domain machine translation setting and compare its performance in various inference scenarios. We find that while the performance difference is small between intervention-based systems and tag-based systems when the domain label matches the test domain, intervention-based systems are robust to label error, making them an attractive choice under label uncertainty. Further, we find that the superiority of single-domain fine-tuning comes under question when training data is scaled, contradicting previous findings. %U https://aclanthology.org/2022.wmt-1.14 %P 220-232
Markdown (Informal)
[Additive Interventions Yield Robust Multi-Domain Machine Translation Models](https://aclanthology.org/2022.wmt-1.14) (Rippeth & Post, WMT 2022)
- Additive Interventions Yield Robust Multi-Domain Machine Translation Models (Rippeth & Post, WMT 2022)
ACL
- Elijah Rippeth and Matt Post. 2022. Additive Interventions Yield Robust Multi-Domain Machine Translation Models. In Proceedings of the Seventh Conference on Machine Translation (WMT), pages 220–232, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.