@inproceedings{rios-etal-2024-bayesian,
title = "{B}ayesian Hierarchical Modelling for Analysing the Effect of Speech Synthesis on Post-Editing Machine Translation",
author = "Rios, Miguel and
Brockmann, Justus and
Wiesinger, Claudia and
Chereji, Raluca and
Secar{\u{a}}, Alina and
Ciobanu, Drago{\textcommabelow{s}}",
editor = "Scarton, Carolina and
Prescott, Charlotte and
Bayliss, Chris and
Oakley, Chris and
Wright, Joanna and
Wrigley, Stuart and
Song, Xingyi and
Gow-Smith, Edward and
Bawden, Rachel and
S{\'a}nchez-Cartagena, V{\'\i}ctor M and
Cadwell, Patrick and
Lapshinova-Koltunski, Ekaterina and
Cabarr{\~a}o, Vera and
Chatzitheodorou, Konstantinos and
Nurminen, Mary and
Kanojia, Diptesh and
Moniz, Helena",
booktitle = "Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)",
month = jun,
year = "2024",
address = "Sheffield, UK",
publisher = "European Association for Machine Translation (EAMT)",
url = "https://aclanthology.org/2024.eamt-1.38",
pages = "455--468",
abstract = "Automatic speech synthesis has seen rapid development and integration in domains as diverse as accessibility services, translation, or language learning platforms. We analyse its integration in a post-editing machine translation (PEMT) environment and the effect this has on quality, productivity, and cognitive effort. We use Bayesian hierarchical modelling to analyse eye-tracking, time-tracking, and error annotation data resulting from an experiment involving 21 professional translators post-editing from English into German in a customised cloud-based CAT environment and listening to the source and/or target texts via speech synthesis. Using speech synthesis in a PEMT task has a non-substantial positive effect on quality, a substantial negative effect on productivity, and a substantial negative effect on the cognitive effort expended on the target text, signifying that participants need to allocate less cognitive effort to the target text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rios-etal-2024-bayesian">
<titleInfo>
<title>Bayesian Hierarchical Modelling for Analysing the Effect of Speech Synthesis on Post-Editing Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Rios</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Justus</namePart>
<namePart type="family">Brockmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Wiesinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raluca</namePart>
<namePart type="family">Chereji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alina</namePart>
<namePart type="family">Secară</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Drago\textcommabelows</namePart>
<namePart type="family">Ciobanu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Scarton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charlotte</namePart>
<namePart type="family">Prescott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Bayliss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Oakley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joanna</namePart>
<namePart type="family">Wright</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stuart</namePart>
<namePart type="family">Wrigley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyi</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Gow-Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Bawden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Víctor</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Sánchez-Cartagena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Cadwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Lapshinova-Koltunski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Cabarrão</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantinos</namePart>
<namePart type="family">Chatzitheodorou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="family">Nurminen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diptesh</namePart>
<namePart type="family">Kanojia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation (EAMT)</publisher>
<place>
<placeTerm type="text">Sheffield, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic speech synthesis has seen rapid development and integration in domains as diverse as accessibility services, translation, or language learning platforms. We analyse its integration in a post-editing machine translation (PEMT) environment and the effect this has on quality, productivity, and cognitive effort. We use Bayesian hierarchical modelling to analyse eye-tracking, time-tracking, and error annotation data resulting from an experiment involving 21 professional translators post-editing from English into German in a customised cloud-based CAT environment and listening to the source and/or target texts via speech synthesis. Using speech synthesis in a PEMT task has a non-substantial positive effect on quality, a substantial negative effect on productivity, and a substantial negative effect on the cognitive effort expended on the target text, signifying that participants need to allocate less cognitive effort to the target text.</abstract>
<identifier type="citekey">rios-etal-2024-bayesian</identifier>
<location>
<url>https://aclanthology.org/2024.eamt-1.38</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>455</start>
<end>468</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bayesian Hierarchical Modelling for Analysing the Effect of Speech Synthesis on Post-Editing Machine Translation
%A Rios, Miguel
%A Brockmann, Justus
%A Wiesinger, Claudia
%A Chereji, Raluca
%A Secară, Alina
%A Ciobanu, Drago\textcommabelows
%Y Scarton, Carolina
%Y Prescott, Charlotte
%Y Bayliss, Chris
%Y Oakley, Chris
%Y Wright, Joanna
%Y Wrigley, Stuart
%Y Song, Xingyi
%Y Gow-Smith, Edward
%Y Bawden, Rachel
%Y Sánchez-Cartagena, Víctor M.
%Y Cadwell, Patrick
%Y Lapshinova-Koltunski, Ekaterina
%Y Cabarrão, Vera
%Y Chatzitheodorou, Konstantinos
%Y Nurminen, Mary
%Y Kanojia, Diptesh
%Y Moniz, Helena
%S Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)
%D 2024
%8 June
%I European Association for Machine Translation (EAMT)
%C Sheffield, UK
%F rios-etal-2024-bayesian
%X Automatic speech synthesis has seen rapid development and integration in domains as diverse as accessibility services, translation, or language learning platforms. We analyse its integration in a post-editing machine translation (PEMT) environment and the effect this has on quality, productivity, and cognitive effort. We use Bayesian hierarchical modelling to analyse eye-tracking, time-tracking, and error annotation data resulting from an experiment involving 21 professional translators post-editing from English into German in a customised cloud-based CAT environment and listening to the source and/or target texts via speech synthesis. Using speech synthesis in a PEMT task has a non-substantial positive effect on quality, a substantial negative effect on productivity, and a substantial negative effect on the cognitive effort expended on the target text, signifying that participants need to allocate less cognitive effort to the target text.
%U https://aclanthology.org/2024.eamt-1.38
%P 455-468
Markdown (Informal)
[Bayesian Hierarchical Modelling for Analysing the Effect of Speech Synthesis on Post-Editing Machine Translation](https://aclanthology.org/2024.eamt-1.38) (Rios et al., EAMT 2024)
ACL