@inproceedings{guo-vosoughi-2024-modabs,
title = "{MODABS}: Multi-Objective Learning for Dynamic Aspect-Based Summarization",
author = "Guo, Xiaobo and
Vosoughi, Soroush",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Findings of the Association for Computational Linguistics ACL 2024",
month = aug,
year = "2024",
address = "Bangkok, Thailand and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.findings-acl.165",
doi = "10.18653/v1/2024.findings-acl.165",
pages = "2814--2827",
abstract = "The rapid proliferation of online content necessitates effective summarization methods, among which dynamic aspect-based summarization stands out. Unlike its traditional counterpart, which assumes a fixed set of known aspects, this approach adapts to the varied aspects of the input text. We introduce a novel multi-objective learning framework employing a Longformer-Encoder-Decoder for this task. The framework optimizes aspect number prediction, minimizes disparity between generated and reference summaries for each aspect, and maximizes dissimilarity across aspect-specific summaries. Extensive experiments show our method significantly outperforms baselines on three diverse datasets, largely due to the effective alignment of generated and reference aspect counts without sacrificing single-aspect summarization quality.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guo-vosoughi-2024-modabs">
<titleInfo>
<title>MODABS: Multi-Objective Learning for Dynamic Aspect-Based Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaobo</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soroush</namePart>
<namePart type="family">Vosoughi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics ACL 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand and virtual meeting</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The rapid proliferation of online content necessitates effective summarization methods, among which dynamic aspect-based summarization stands out. Unlike its traditional counterpart, which assumes a fixed set of known aspects, this approach adapts to the varied aspects of the input text. We introduce a novel multi-objective learning framework employing a Longformer-Encoder-Decoder for this task. The framework optimizes aspect number prediction, minimizes disparity between generated and reference summaries for each aspect, and maximizes dissimilarity across aspect-specific summaries. Extensive experiments show our method significantly outperforms baselines on three diverse datasets, largely due to the effective alignment of generated and reference aspect counts without sacrificing single-aspect summarization quality.</abstract>
<identifier type="citekey">guo-vosoughi-2024-modabs</identifier>
<identifier type="doi">10.18653/v1/2024.findings-acl.165</identifier>
<location>
<url>https://aclanthology.org/2024.findings-acl.165</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>2814</start>
<end>2827</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MODABS: Multi-Objective Learning for Dynamic Aspect-Based Summarization
%A Guo, Xiaobo
%A Vosoughi, Soroush
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Findings of the Association for Computational Linguistics ACL 2024
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand and virtual meeting
%F guo-vosoughi-2024-modabs
%X The rapid proliferation of online content necessitates effective summarization methods, among which dynamic aspect-based summarization stands out. Unlike its traditional counterpart, which assumes a fixed set of known aspects, this approach adapts to the varied aspects of the input text. We introduce a novel multi-objective learning framework employing a Longformer-Encoder-Decoder for this task. The framework optimizes aspect number prediction, minimizes disparity between generated and reference summaries for each aspect, and maximizes dissimilarity across aspect-specific summaries. Extensive experiments show our method significantly outperforms baselines on three diverse datasets, largely due to the effective alignment of generated and reference aspect counts without sacrificing single-aspect summarization quality.
%R 10.18653/v1/2024.findings-acl.165
%U https://aclanthology.org/2024.findings-acl.165
%U https://doi.org/10.18653/v1/2024.findings-acl.165
%P 2814-2827
Markdown (Informal)
[MODABS: Multi-Objective Learning for Dynamic Aspect-Based Summarization](https://aclanthology.org/2024.findings-acl.165) (Guo & Vosoughi, Findings 2024)
ACL