@inproceedings{ji-etal-2024-responded,
title = "Who Responded to Whom: The Joint Effects of Latent Topics and Discourse in Conversation Structure",
author = "Ji, Lu and
Chen, Lei and
Li, Jing and
Wei, Zhongyu and
Zhang, Qi and
Huang, Xuanjing",
editor = "Wong, Kam-Fai and
Zhang, Min and
Xu, Ruifeng and
Li, Jing and
Wei, Zhongyu and
Gui, Lin and
Liang, Bin and
Zhao, Runcong",
booktitle = "Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.sighan-1.7",
pages = "58--68",
abstract = "Vast amount of online conversations are produced on a daily basis, resulting in a pressing need to automatic conversation understanding. As a basis to structure a discussion, we identify the responding relations in the conversation discourse, which link response utterances to their initiations. To figure out who responded to whom, here we explore how the consistency of topic contents and dependency of discourse roles indicate such interactions, whereas most prior work ignore the effects of latent factors underlying word occurrences. We propose a neural model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links via exploiting topic consistency and discourse dependency. Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ji-etal-2024-responded">
<titleInfo>
<title>Who Responded to Whom: The Joint Effects of Latent Topics and Discourse in Conversation Structure</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kam-Fai</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruifeng</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Gui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Runcong</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Vast amount of online conversations are produced on a daily basis, resulting in a pressing need to automatic conversation understanding. As a basis to structure a discussion, we identify the responding relations in the conversation discourse, which link response utterances to their initiations. To figure out who responded to whom, here we explore how the consistency of topic contents and dependency of discourse roles indicate such interactions, whereas most prior work ignore the effects of latent factors underlying word occurrences. We propose a neural model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links via exploiting topic consistency and discourse dependency. Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.</abstract>
<identifier type="citekey">ji-etal-2024-responded</identifier>
<location>
<url>https://aclanthology.org/2024.sighan-1.7</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>58</start>
<end>68</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Who Responded to Whom: The Joint Effects of Latent Topics and Discourse in Conversation Structure
%A Ji, Lu
%A Chen, Lei
%A Li, Jing
%A Wei, Zhongyu
%A Zhang, Qi
%A Huang, Xuanjing
%Y Wong, Kam-Fai
%Y Zhang, Min
%Y Xu, Ruifeng
%Y Li, Jing
%Y Wei, Zhongyu
%Y Gui, Lin
%Y Liang, Bin
%Y Zhao, Runcong
%S Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F ji-etal-2024-responded
%X Vast amount of online conversations are produced on a daily basis, resulting in a pressing need to automatic conversation understanding. As a basis to structure a discussion, we identify the responding relations in the conversation discourse, which link response utterances to their initiations. To figure out who responded to whom, here we explore how the consistency of topic contents and dependency of discourse roles indicate such interactions, whereas most prior work ignore the effects of latent factors underlying word occurrences. We propose a neural model to learn latent topics and discourse in word distributions, and predict pairwise initiation-response links via exploiting topic consistency and discourse dependency. Experimental results on both English and Chinese conversations show that our model significantly outperforms the previous state of the arts.
%U https://aclanthology.org/2024.sighan-1.7
%P 58-68
Markdown (Informal)
[Who Responded to Whom: The Joint Effects of Latent Topics and Discourse in Conversation Structure](https://aclanthology.org/2024.sighan-1.7) (Ji et al., SIGHAN-WS 2024)
ACL