This evidence-based position paper critiques current research practices within the language model pre-training literature. Despite rapid recent progress afforded by increasingly better pre-trained language models (PLMs), current PLM research practices often conflate different possible sources of model improvement, without conducting proper ablation studies and principled comparisons between different models under comparable conditions. These practices (i) leave us ill-equipped to understand which pre-training approaches should be used under what circumstances; (ii) impede reproducibility and credit assignment; and (iii) render it difficult to understand: “How exactly does each factor contribute to the progress that we have today?” We provide a case in point by revisiting the success of BERT over its baselines, ELMo and GPT-1, and demonstrate how — under comparable conditions where the baselines are tuned to a similar extent — these baselines (and even-simpler variants thereof) can, in fact, achieve competitive or better performance than BERT. These findings demonstrate how disentangling different factors of model improvements can lead to valuable new insights. We conclude with recommendations for how to encourage and incentivize this line of work, and accelerate progress towards a better and more systematic understanding of what factors drive the progress of our foundation models today.
After just a few hundred training updates, a standard probabilistic model for language generation has likely not yet learnt many semantic or syntactic rules of natural language, making it difficult to estimate the probability distribution over next tokens. Yet around this point, these models have identified a simple, loss-minimising behaviour: to output the unigram distribution of the target training corpus. The use of such a heuristic raises the question: Can we initialise our models with this behaviour and save precious compute resources and model capacity? Here we show that we can effectively endow standard neural language generation models with a separate module that reflects unigram frequency statistics as prior knowledge, simply by initialising the bias term in a model’s final linear layer with the log-unigram distribution. We use neural machine translation as a test bed for this simple technique and observe that it: (i) improves learning efficiency; (ii) achieves better overall performance; and perhaps most importantly (iii) appears to disentangle strong frequency effects by encouraging the model to specialise in non-frequency-related aspects of language.
Language models (LMs) trained on large amounts of data have shown impressive performance on many NLP tasks under the zero-shot and few-shot setup. Here we aim to better understand the extent to which such models learn commonsense knowledge — a critical component of many NLP applications. We conduct a systematic and rigorous zero-shot and few-shot commonsense evaluation of large pre-trained LMs, where we: (i) carefully control for the LMs’ ability to exploit potential surface cues and annotation artefacts, and (ii) account for variations in performance that arise from factors that are not related to commonsense knowledge. Our findings highlight the limitations of pre-trained LMs in acquiring commonsense knowledge without task-specific supervision; furthermore, using larger models or few-shot evaluation is insufficient to achieve human-level commonsense performance.
We introduce Transformer Grammars (TGs), a novel class of Transformer language models that combine (i) the expressive power, scalability, and strong performance of Transformers and (ii) recursive syntactic compositions, which here are implemented through a special attention mask and deterministic transformation of the linearized tree. We find that TGs outperform various strong baselines on sentence-level language modeling perplexity, as well as on multiple syntax-sensitive language modeling evaluation metrics. Additionally, we find that the recursive syntactic composition bottleneck which represents each sentence as a single vector harms perplexity on document-level language modeling, providing evidence that a different kind of memory mechanism—one that is independent of composed syntactic representations—plays an important role in current successful models of long text.
Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource—yet widely spoken—languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks—despite using only one-fifth the parameters of a larger multilingual model, mBART-large (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, localized languages to achieve more efficient learning and faster inference at very low-resource languages like Javanese and Sundanese.
Textual representation learners trained on large amounts of data have achieved notable success on downstream tasks; intriguingly, they have also performed well on challenging tests of syntactic competence. Hence, it remains an open question whether scalable learners like BERT can become fully proficient in the syntax of natural language by virtue of data scale alone, or whether they still benefit from more explicit syntactic biases. To answer this question, we introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining, by distilling the syntactically informative predictions of a hierarchical—albeit harder to scale—syntactic language model. Since BERT models masked words in bidirectional context, we propose to distill the approximate marginal distribution over words in context from the syntactic LM. Our approach reduces relative error by 2–21% on a diverse set of structured prediction tasks, although we obtain mixed results on the GLUE benchmark. Our findings demonstrate the benefits of syntactic biases, even for representation learners that exploit large amounts of data, and contribute to a better understanding of where syntactic biases are helpful in benchmarks of natural language understanding.
Prior work has shown that, on small amounts of training data, syntactic neural language models learn structurally sensitive generalisations more successfully than sequential language models. However, their computational complexity renders scaling difficult, and it remains an open question whether structural biases are still necessary when sequential models have access to ever larger amounts of training data. To answer this question, we introduce an efficient knowledge distillation (KD) technique that transfers knowledge from a syntactic language model trained on a small corpus to an LSTM language model, hence enabling the LSTM to develop a more structurally sensitive representation of the larger training data it learns from. On targeted syntactic evaluations, we find that, while sequential LSTMs perform much better than previously reported, our proposed technique substantially improves on this baseline, yielding a new state of the art. Our findings and analysis affirm the importance of structural biases, even in models that learn from large amounts of data.
Recurrent neural network grammars (RNNG) are generative models of language which jointly model syntax and surface structure by incrementally generating a syntax tree and sentence in a top-down, left-to-right order. Supervised RNNGs achieve strong language modeling and parsing performance, but require an annotated corpus of parse trees. In this work, we experiment with unsupervised learning of RNNGs. Since directly marginalizing over the space of latent trees is intractable, we instead apply amortized variational inference. To maximize the evidence lower bound, we develop an inference network parameterized as a neural CRF constituency parser. On language modeling, unsupervised RNNGs perform as well their supervised counterparts on benchmarks in English and Chinese. On constituency grammar induction, they are competitive with recent neural language models that induce tree structures from words through attention mechanisms.
Domain-specific training typically makes NLP systems work better. We show that this extends to cognitive modeling as well by relating the states of a neural phrase-structure parser to electrophysiological measures from human participants. These measures were recorded as participants listened to a spoken recitation of the same literary text that was supplied as input to the neural parser. Given more training data, the system derives a better cognitive model — but only when the training examples come from the same textual genre. This finding is consistent with the idea that humans adapt syntactic expectations to particular genres during language comprehension (Kaan and Chun, 2018; Branigan and Pickering, 2017).
Language exhibits hierarchical structure, but recent work using a subject-verb agreement diagnostic argued that state-of-the-art language models, LSTMs, fail to learn long-range syntax sensitive dependencies. Using the same diagnostic, we show that, in fact, LSTMs do succeed in learning such dependencies—provided they have enough capacity. We then explore whether models that have access to explicit syntactic information learn agreement more effectively, and how the way in which this structural information is incorporated into the model impacts performance. We find that the mere presence of syntactic information does not improve accuracy, but when model architecture is determined by syntax, number agreement is improved. Further, we find that the choice of how syntactic structure is built affects how well number agreement is learned: top-down construction outperforms left-corner and bottom-up variants in capturing non-local structural dependencies.
Recurrent neural network grammars (RNNGs) are generative models of (tree , string ) pairs that rely on neural networks to evaluate derivational choices. Parsing with them using beam search yields a variety of incremental complexity metrics such as word surprisal and parser action count. When used as regressors against human electrophysiological responses to naturalistic text, they derive two amplitude effects: an early peak and a P600-like later peak. By contrast, a non-syntactic neural language model yields no reliable effects. Model comparisons attribute the early peak to syntactic composition within the RNNG. This pattern of results recommends the RNNG+beam search combination as a mechanistic model of the syntactic processing that occurs during normal human language comprehension.
Recurrent neural network grammars (RNNG) are a recently proposed probablistic generative modeling family for natural language. They show state-of-the-art language modeling and parsing performance. We investigate what information they learn, from a linguistic perspective, through various ablations to the model and the data, and by augmenting the model with an attention mechanism (GA-RNNG) to enable closer inspection. We find that explicit modeling of composition is crucial for achieving the best performance. Through the attention mechanism, we find that headedness plays a central role in phrasal representation (with the model’s latent attention largely agreeing with predictions made by hand-crafted head rules, albeit with some important differences). By training grammars without nonterminal labels, we find that phrasal representations depend minimally on nonterminals, providing support for the endocentricity hypothesis.