2024
pdf
bib
abs
Efficient Citer: Tuning Large Language Models for Enhanced Answer Quality and Verification
Marzieh Tahaei
|
Aref Jafari
|
Ahmad Rashid
|
David Alfonso-Hermelo
|
Khalil Bibi
|
Yimeng Wu
|
Ali Ghodsi
|
Boxing Chen
|
Mehdi Rezagholizadeh
Findings of the Association for Computational Linguistics: NAACL 2024
In recent years, there has been a growing interest in utilizing external knowledge to reduce hallucinations in large language models (LLMs) and provide them with updated information. Despite this improvement, a major challenge lies in the lack of explicit citations, which hampers the ability to verify the information generated by these models.This paper focuses on providing models with citation capabilities efficiently. By constructing a dataset of citations, we train two model architectures: an FID-style FLAN-T5 model for efficient answer composition and a 13B model known for its success in instruction following after tuning. Evaluation on fluency, correctness, and citation quality is conducted through human assessment and the newly introduced Automatic LLMs’ Citation Evaluation (ALCE) benchmark.Results demonstrate significant improvements in answer quality and efficiency, surpassing the performance of the popular ChatGPT on some of the metrics. The models exhibit exceptional out-of-domain generalization in both human and automatic evaluation. Notably, the FID-style FLAN-T5 model with only 3B parameters performs impressively compared to the 13B model.
2023
pdf
bib
abs
Attribute Controlled Dialogue Prompting
Runcheng Liu
|
Ahmad Rashid
|
Ivan Kobyzev
|
Mehdi Rezagholizadeh
|
Pascal Poupart
Findings of the Association for Computational Linguistics: ACL 2023
Prompt-tuning has become an increasingly popular parameter-efficient method for adapting large pretrained language models to downstream tasks. However, both discrete prompting and continuous prompting assume fixed prompts for all data samples within a task, neglecting the fact that inputs vary greatly in some tasks such as open-domain dialogue generation. In this paper, we present a novel, instance-specific prompt-tuning algorithm for dialogue generation. Specifically, we generate prompts based on instance-level control code, rather than the conversation history, to explore their impact on controlled dialogue generation. Experiments on popular open-domain dialogue datasets, evaluated on both automated metrics and human evaluation, demonstrate that our method is superior to prompting baselines and comparable to fine-tuning with only 5%-6% of total parameters.
pdf
bib
abs
LABO: Towards Learning Optimal Label Regularization via Bi-level Optimization
Peng Lu
|
Ahmad Rashid
|
Ivan Kobyzev
|
Mehdi Rezagholizadeh
|
Phillippe Langlais
Findings of the Association for Computational Linguistics: ACL 2023
Regularization techniques are crucial to improving the generalization performance and training efficiency of deep neural networks. Many deep learning algorithms rely on weight decay, dropout, batch/layer normalization to converge faster and generalize. Label Smoothing (LS) is another simple, versatile and efficient regularization which can be applied to various supervised classification tasks. Conventional LS, however, regardless of the training instance assumes that each non-target class is equally likely. In this work, we present a general framework for training with label regularization, which includes conventional LS but can also model instance-specific variants. Based on this formulation, we propose an efficient way of learning LAbel regularization by devising a Bi-level Optimization (LABO) problem. We derive a deterministic and interpretable solution of the inner loop as the optimal label smoothing without the need to store the parameters or the output of a trained model. Finally, we conduct extensive experiments and demonstrate our LABO consistently yields improvement over conventional label regularization on various fields, including seven machine translation and three image classification tasks across various neural network architectures while maintaining training efficiency.
2022
pdf
bib
abs
Kronecker Decomposition for GPT Compression
Ali Edalati
|
Marzieh Tahaei
|
Ahmad Rashid
|
Vahid Nia
|
James Clark
|
Mehdi Rezagholizadeh
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
GPT is an auto-regressive Transformer-based pre-trained language model which has attracted a lot of attention in the natural language processing (NLP) domain. The success of GPT is mostly attributed to its pre-training on huge amount of data and its large number of parameters. Despite the superior performance of GPT, this overparameterized nature of GPT can be very prohibitive for deploying this model on devices with limited computational power or memory. This problem can be mitigated using model compression techniques; however, compressing GPT models has not been investigated much in the literature. In this work, we use Kronecker decomposition to compress the linear mappings of the GPT-2 model. Our Kronecker GPT-2 model (KnGPT2) is initialized based on the Kronecker decomposed version of the GPT-2 model and then is undergone a very light pre- training on only a small portion of the training data with intermediate layer knowledge distillation (ILKD). Finally, our KnGPT2 is fine-tuned on downstream tasks using ILKD as well. We evaluate our model on both language modeling and General Language Understanding Evaluation benchmark tasks and show that with more efficient pre-training and similar number of parameters, our KnGPT2 outperforms the existing DistilGPT2 model significantly.
pdf
bib
abs
Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Processing
Abbas Ghaddar
|
Yimeng Wu
|
Sunyam Bagga
|
Ahmad Rashid
|
Khalil Bibi
|
Mehdi Rezagholizadeh
|
Chao Xing
|
Yasheng Wang
|
Xinyu Duan
|
Zhefeng Wang
|
Baoxing Huai
|
Xin Jiang
|
Qun Liu
|
Phillippe Langlais
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
There is a growing body of work in recent years to develop pre-trained language models (PLMs) for the Arabic language. This work addresses two major problems in existing Arabic PLMs that limit the progress of the Arabic NLU and NLG fields. First, existing Arabic PLMs are not well-explored and their pre-training can be improved significantly using a more methodical approach. Second, there is a lack of systematic and reproducible evaluation of these models in the literature. We revisit both the pre-training and evaluation of Arabic PLMs. In terms of pre-training, we explore the impact of the quality of the pretraining data, the size of the model, and the incorporation of character-level information on Arabic PLM. As a result, we release three new Arabic BERT-style models ( JABER, Char-JABER, and SABER), and two T5-style models (AT5S and AT5B). In terms of evaluation, we conduct a comprehensive empirical study to systematically evaluate the performance of existing state-of-the-art models on ALUE, a leaderboard-powered benchmark for Arabic NLU tasks, and on a subset of the Arabic generative tasks. We show that our models significantly outperform existing Arabic PLMs and achieve a new state-of-the-art performance on discriminative and generative Arabic NLU and NLG tasks. Our models and source code to reproduce results will be made available upon acceptance.
pdf
bib
abs
Improving Generalization of Pre-trained Language Models via Stochastic Weight Averaging
Peng Lu
|
Ivan Kobyzev
|
Mehdi Rezagholizadeh
|
Ahmad Rashid
|
Ali Ghodsi
|
Phillippe Langlais
Findings of the Association for Computational Linguistics: EMNLP 2022
Knowledge Distillation (KD) is a commonly used technique for improving the generalization of compact Pre-trained Language Models (PLMs) on downstream tasks. However, such methods impose the additional burden of training a separate teacher model for every new dataset.Alternatively, one may directly work on the improvement of the optimization procedure of the compact model towards better generalization. Recent works observe that the flatness of the local minimum correlates well with better generalization.In this work, we adapt Stochastic Weight Averaging (SWA), a method encouraging convergence to a flatter minimum, to fine-tuning PLMs. We conduct extensive experiments on various NLP tasks (text classification, question answering, and generation) and different model architectures and demonstrate that our adaptation improves the generalization without extra computation cost. Moreover, we observe that this simple optimization technique is able to outperform the state-of-the-art KD methods for compact models.
2021
pdf
bib
abs
MATE-KD: Masked Adversarial TExt, a Companion to Knowledge Distillation
Ahmad Rashid
|
Vasileios Lioutas
|
Mehdi Rezagholizadeh
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
The advent of large pre-trained language models has given rise to rapid progress in the field of Natural Language Processing (NLP). While the performance of these models on standard benchmarks has scaled with size, compression techniques such as knowledge distillation have been key in making them practical. We present MATE-KD, a novel text-based adversarial training algorithm which improves the performance of knowledge distillation. MATE-KD first trains a masked language model-based generator to perturb text by maximizing the divergence between teacher and student logits. Then using knowledge distillation a student is trained on both the original and the perturbed training samples. We evaluate our algorithm, using BERT-based models, on the GLUE benchmark and demonstrate that MATE-KD outperforms competitive adversarial learning and data augmentation baselines. On the GLUE test set our 6 layer RoBERTa based model outperforms BERT-large.
pdf
bib
abs
Towards Zero-Shot Knowledge Distillation for Natural Language Processing
Ahmad Rashid
|
Vasileios Lioutas
|
Abbas Ghaddar
|
Mehdi Rezagholizadeh
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Knowledge distillation (KD) is a common knowledge transfer algorithm used for model compression across a variety of deep learning based natural language processing (NLP) solutions. In its regular manifestations, KD requires access to the teacher’s training data for knowledge transfer to the student network. However, privacy concerns, data regulations and proprietary reasons may prevent access to such data. We present, to the best of our knowledge, the first work on Zero-shot Knowledge Distillation for NLP, where the student learns from the much larger teacher without any task specific data. Our solution combines out-of-domain data and adversarial training to learn the teacher’s output distribution. We investigate six tasks from the GLUE benchmark and demonstrate that we can achieve between 75% and 92% of the teacher’s classification score (accuracy or F1) while compressing the model 30 times.
pdf
bib
End-to-End Self-Debiasing Framework for Robust NLU Training
Abbas Ghaddar
|
Phillippe Langlais
|
Mehdi Rezagholizadeh
|
Ahmad Rashid
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
pdf
bib
abs
How to Select One Among All ? An Empirical Study Towards the Robustness of Knowledge Distillation in Natural Language Understanding
Tianda Li
|
Ahmad Rashid
|
Aref Jafari
|
Pranav Sharma
|
Ali Ghodsi
|
Mehdi Rezagholizadeh
Findings of the Association for Computational Linguistics: EMNLP 2021
Knowledge Distillation (KD) is a model compression algorithm that helps transfer the knowledge in a large neural network into a smaller one. Even though KD has shown promise on a wide range of Natural Language Processing (NLP) applications, little is understood about how one KD algorithm compares to another and whether these approaches can be complimentary to each other. In this work, we evaluate various KD algorithms on in-domain, out-of-domain and adversarial testing. We propose a framework to assess adversarial robustness of multiple KD algorithms. Moreover, we introduce a new KD algorithm, Combined-KD, which takes advantage of two promising approaches (better training scheme and more efficient data augmentation). Our extensive experimental results show that Combined-KD achieves state-of-the-art results on the GLUE benchmark, out-of-domain generalization, and adversarial robustness compared to competitive methods.
pdf
bib
abs
RW-KD: Sample-wise Loss Terms Re-Weighting for Knowledge Distillation
Peng Lu
|
Abbas Ghaddar
|
Ahmad Rashid
|
Mehdi Rezagholizadeh
|
Ali Ghodsi
|
Philippe Langlais
Findings of the Association for Computational Linguistics: EMNLP 2021
Knowledge Distillation (KD) is extensively used in Natural Language Processing to compress the pre-training and task-specific fine-tuning phases of large neural language models. A student model is trained to minimize a convex combination of the prediction loss over the labels and another over the teacher output. However, most existing works either fix the interpolating weight between the two losses apriori or vary the weight using heuristics. In this work, we propose a novel sample-wise loss weighting method, RW-KD. A meta-learner, simultaneously trained with the student, adaptively re-weights the two losses for each sample. We demonstrate, on 7 datasets of the GLUE benchmark, that RW-KD outperforms other loss re-weighting methods for KD.
pdf
bib
abs
Context-aware Adversarial Training for Name Regularity Bias in Named Entity Recognition
Abbas Ghaddar
|
Philippe Langlais
|
Ahmad Rashid
|
Mehdi Rezagholizadeh
Transactions of the Association for Computational Linguistics, Volume 9
In this work, we examine the ability of NER models to use contextual information when predicting the type of an ambiguous entity. We introduce NRB, a new testbed carefully designed to diagnose Name Regularity Bias of NER models. Our results indicate that all state-of-the-art models we tested show such a bias; BERT fine-tuned models significantly outperforming feature-based (LSTM-CRF) ones on NRB, despite having comparable (sometimes lower) performance on standard benchmarks. To mitigate this bias, we propose a novel model-agnostic training method that adds learnable adversarial noise to some entity mentions, thus enforcing models to focus more strongly on the contextual signal, leading to significant gains on NRB. Combining it with two other training strategies, data augmentation and parameter freezing, leads to further gains.
pdf
bib
abs
Knowledge Distillation with Noisy Labels for Natural Language Understanding
Shivendra Bhardwaj
|
Abbas Ghaddar
|
Ahmad Rashid
|
Khalil Bibi
|
Chengyang Li
|
Ali Ghodsi
|
Phillippe Langlais
|
Mehdi Rezagholizadeh
Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)
Knowledge Distillation (KD) is extensively used to compress and deploy large pre-trained language models on edge devices for real-world applications. However, one neglected area of research is the impact of noisy (corrupted) labels on KD. We present, to the best of our knowledge, the first study on KD with noisy labels in Natural Language Understanding (NLU). We document the scope of the problem and present two methods to mitigate the impact of label noise. Experiments on the GLUE benchmark show that our methods are effective even under high noise levels. Nevertheless, our results indicate that more research is necessary to cope with label noise under the KD.
2020
pdf
bib
abs
Improving Word Embedding Factorization for Compression Using Distilled Nonlinear Neural Decomposition
Vasileios Lioutas
|
Ahmad Rashid
|
Krtin Kumar
|
Md. Akmal Haidar
|
Mehdi Rezagholizadeh
Findings of the Association for Computational Linguistics: EMNLP 2020
Word-embeddings are vital components of Natural Language Processing (NLP) models and have been extensively explored. However, they consume a lot of memory which poses a challenge for edge deployment. Embedding matrices, typically, contain most of the parameters for language models and about a third for machine translation systems. In this paper, we propose Distilled Embedding, an (input/output) embedding compression method based on low-rank matrix decomposition and knowledge distillation. First, we initialize the weights of our decomposed matrices by learning to reconstruct the full pre-trained word-embedding and then fine-tune end-to-end, employing knowledge distillation on the factorized embedding. We conduct extensive experiments with various compression rates on machine translation and language modeling, using different data-sets with a shared word-embedding matrix for both embedding and vocabulary projection matrices. We show that the proposed technique is simple to replicate, with one fixed parameter controlling compression size, has higher BLEU score on translation and lower perplexity on language modeling compared to complex, difficult to tune state-of-the-art methods.
2019
pdf
bib
abs
Latent Code and Text-based Generative Adversarial Networks for Soft-text Generation
Md. Akmal Haidar
|
Mehdi Rezagholizadeh
|
Alan Do Omri
|
Ahmad Rashid
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
Text generation with generative adversarial networks (GANs) can be divided into the text-based and code-based categories according to the type of signals used for discrimination. In this work, we introduce a novel text-based approach called Soft-GAN to effectively exploit GAN setup for text generation. We demonstrate how autoencoders (AEs) can be used for providing a continuous representation of sentences, which we will refer to as soft-text. This soft representation will be used in GAN discrimination to synthesize similar soft-texts. We also propose hybrid latent code and text-based GAN (LATEXT-GAN) approaches with one or more discriminators, in which a combination of the latent code and the soft-text is used for GAN discriminations. We perform a number of subjective and objective experiments on two well-known datasets (SNLI and Image COCO) to validate our techniques. We discuss the results using several evaluation metrics and show that the proposed techniques outperform the traditional GAN-based text-generation methods.
pdf
bib
abs
Bilingual-GAN: A Step Towards Parallel Text Generation
Ahmad Rashid
|
Alan Do-Omri
|
Md. Akmal Haidar
|
Qun Liu
|
Mehdi Rezagholizadeh
Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation
Latent space based GAN methods and attention based sequence to sequence models have achieved impressive results in text generation and unsupervised machine translation respectively. Leveraging the two domains, we propose an adversarial latent space based model capable of generating parallel sentences in two languages concurrently and translating bidirectionally. The bilingual generation goal is achieved by sampling from the latent space that is shared between both languages. First two denoising autoencoders are trained, with shared encoders and back-translation to enforce a shared latent state between the two languages. The decoder is shared for the two translation directions. Next, a GAN is trained to generate synthetic ‘code’ mimicking the languages’ shared latent space. This code is then fed into the decoder to generate text in either language. We perform our experiments on Europarl and Multi30k datasets, on the English-French language pair, and document our performance using both supervised and unsupervised machine translation.