A limited amount of studies investigates the role of model-agnostic adversarial behavior in toxic content classification. As toxicity classifiers predominantly rely on lexical cues, (deliberately) creative and evolving language-use can be detrimental to the utility of current corpora and state-of-the-art models when they are deployed for content moderation. The less training data is available, the more vulnerable models might become. This study is, to our knowledge, the first to investigate the effect of adversarial behavior and augmentation for cyberbullying detection. We demonstrate that model-agnostic lexical substitutions significantly hurt classifier performance. Moreover, when these perturbed samples are used for augmentation, we show models become robust against word-level perturbations at a slight trade-off in overall task performance. Augmentations proposed in prior work on toxicity prove to be less effective. Our results underline the need for such evaluations in online harm areas with small corpora.
A natural language database interface (NLDB) can democratize data-driven insights for non-technical users. However, existing Text-to-SQL semantic parsers cannot achieve high enough accuracy in the cross-database setting to allow good usability in practice. This work presents TURING, a NLDB system toward bridging this gap. The cross-domain semantic parser of TURING with our novel value prediction method achieves 75.1% execution accuracy, and 78.3% top-5 beam execution accuracy on the Spider validation set (Yu et al., 2018b). To benefit from the higher beam accuracy, we design an interactive system where the SQL hypotheses in the beam are explained step-by-step in natural language, with their differences highlighted. The user can then compare and judge the hypotheses to select which one reflects their intention if any. The English explanations of SQL queries in TURING are produced by our high-precision natural language generation system based on synchronous grammars.
Modern neural approaches to dependency parsing are trained to predict a tree structure by jointly learning a contextual representation for tokens in a sentence, as well as a head–dependent scoring function. Whereas this strategy results in high performance, it is difficult to interpret these representations in relation to the geometry of the underlying tree structure. Our work seeks instead to learn interpretable representations by training a parser to explicitly preserve structural properties of a tree. We do so by casting dependency parsing as a tree embedding problem where we incorporate geometric properties of dependency trees in the form of training losses within a graph-based parser. We provide a thorough evaluation of these geometric losses, showing that a majority of them yield strong tree distance preservation as well as parsing performance on par with a competitive graph-based parser (Qi et al., 2018). Finally, we show where parsing errors lie in terms of tree relationship in order to guide future work.
Contextual word-representations became a standard in modern natural language processing systems. These models use subword tokenization to handle large vocabularies and unknown words. Word-level usage of such systems requires a way of pooling multiple subwords that correspond to a single word. In this paper we investigate how the choice of subword pooling affects the downstream performance on three tasks: morphological probing, POS tagging and NER, in 9 typologically diverse languages. We compare these in two massively multilingual models, mBERT and XLM-RoBERTa. For morphological tasks, the widely used ‘choose the first subword’ is the worst strategy and the best results are obtained by using attention over the subwords. For POS tagging both of these strategies perform poorly and the best choice is to use a small LSTM over the subwords. The same strategy works best for NER and we show that mBERT is better than XLM-RoBERTa in all 9 languages. We publicly release all code, data and the full result tables at https://github.com/juditacs/subword-choice .
Written language contains stylistic cues that can be exploited to automatically infer a variety of potentially sensitive author information. Adversarial stylometry intends to attack such models by rewriting an author’s text. Our research proposes several components to facilitate deployment of these adversarial attacks in the wild, where neither data nor target models are accessible. We introduce a transformer-based extension of a lexical replacement attack, and show it achieves high transferability when trained on a weakly labeled corpus—decreasing target model performance below chance. While not completely inconspicuous, our more successful attacks also prove notably less detectable by humans. Our framework therefore provides a promising direction for future privacy-preserving adversarial attacks.
Semantic parses are directed acyclic graphs (DAGs), but in practice most parsers treat them as strings or trees, mainly because models that predict graphs are far less understood. This simplification, however, comes at a cost: there is no guarantee that the output is a well-formed graph. A recent work by Fancellu et al. (2019) addressed this problem by proposing a graph-aware sequence model that utilizes a DAG grammar to guide graph generation. We significantly improve upon this work, by proposing a simpler architecture as well as more efficient training and inference algorithms that can always guarantee the well-formedness of the generated graphs. Importantly, unlike Fancellu et al., our model does not require language-specific features, and hence can harness the inherent ability of DAG-grammar parsing in multilingual settings. We perform monolingual as well as multilingual experiments on the Parallel Meaning Bank (Abzianidze et al., 2017). Our parser outperforms previous graph-aware models by a large margin, and closes the performance gap between string-based and DAG-grammar parsing.
Lemmatization of standard languages is concerned with (i) abstracting over morphological differences and (ii) resolving token-lemma ambiguities of inflected words in order to map them to a dictionary headword. In the present paper we aim to improve lemmatization performance on a set of non-standard historical languages in which the difficulty is increased by an additional aspect (iii): spelling variation due to lacking orthographic standards. We approach lemmatization as a string-transduction task with an Encoder-Decoder architecture which we enrich with sentence information using a hierarchical sentence encoder. We show significant improvements over the state-of-the-art by fine-tuning the sentence encodings to jointly optimize a bidirectional language model loss. Crucially, our architecture does not require POS or morphological annotations, which are not always available for historical corpora. Additionally, we also test the proposed model on a set of typologically diverse standard languages showing results on par or better than a model without fine-tuned sentence representations and previous state-of-the-art systems. Finally, to encourage future work on processing of non-standard varieties, we release the dataset of non-standard languages underlying the present study, which is based on openly accessible sources.
Recent work has shown how to learn better visual-semantic embeddings by leveraging image descriptions in more than one language. Here, we investigate in detail which conditions affect the performance of this type of grounded language learning model. We show that multilingual training improves over bilingual training, and that low-resource languages benefit from training with higher-resource languages. We demonstrate that a multilingual model can be trained equally well on either translations or comparable sentence pairs, and that annotating the same set of images in multiple language enables further improvements via an additional caption-caption ranking objective.
Traditionally, Referring Expression Generation (REG) models first decide on the form and then on the content of references to discourse entities in text, typically relying on features such as salience and grammatical function. In this paper, we present a new approach (NeuralREG), relying on deep neural networks, which makes decisions about form and content in one go without explicit feature extraction. Using a delexicalized version of the WebNLG corpus, we show that the neural model substantially improves over two strong baselines.
Hierarchical Multiscale LSTM (Chung et. al., 2016) is a state-of-the-art language model that learns interpretable structure from character-level input. Such models can provide fertile ground for (cognitive) computational linguistics studies. However, the high complexity of the architecture, training and implementations might hinder its applicability. We provide a detailed reproduction and ablation study of the architecture, shedding light on some of the potential caveats of re-purposing complex deep-learning architectures. We further show that simplifying certain aspects of the architecture can in fact improve its performance. We also investigate the linguistic units (segments) learned by various levels of the model, and argue that their quality does not correlate with the overall performance of the model on language modeling.
We present a corpus of spoken Dutch image descriptions, paired with two sets of eye-tracking data: Free viewing, where participants look at images without any particular purpose, and Description viewing, where we track eye movements while participants produce spoken descriptions of the images they are viewing. This paper describes the data collection procedure and the corpus itself, and provides an initial analysis of self-corrections in image descriptions. We also present two studies showing the potential of this data. Though these studies mainly serve as an example, we do find two interesting results: (1) the eye-tracking data for the description viewing task is more coherent than for the free-viewing task; (2) variation in image descriptions (also called ‘image specificity’; Jas and Parikh, 2015) is only moderately correlated across different languages. Our corpus can be used to gain a deeper understanding of the image description task, particularly how visual attention is correlated with the image description process.
We present novel methods for analyzing the activation patterns of recurrent neural networks from a linguistic point of view and explore the types of linguistic structure they learn. As a case study, we use a standard standalone language model, and a multi-task gated recurrent network architecture consisting of two parallel pathways with shared word embeddings: The Visual pathway is trained on predicting the representations of the visual scene corresponding to an input sentence, and the Textual pathway is trained to predict the next word in the same sentence. We propose a method for estimating the amount of contribution of individual tokens in the input to the final prediction of the networks. Using this method, we show that the Visual pathway pays selective attention to lexical categories and grammatical functions that carry semantic information, and learns to treat word types differently depending on their grammatical function and their position in the sequential structure of the sentence. In contrast, the language models are comparatively more sensitive to words with a syntactic function. Further analysis of the most informative n-gram contexts for each model shows that in comparison with the Visual pathway, the language models react more strongly to abstract contexts that represent syntactic constructions.
We decompose multimodal translation into two sub-tasks: learning to translate and learning visually grounded representations. In a multitask learning framework, translations are learned in an attention-based encoder-decoder, and grounded representations are learned through image representation prediction. Our approach improves translation performance compared to the state of the art on the Multi30K dataset. Furthermore, it is equally effective if we train the image prediction task on the external MS COCO dataset, and we find improvements if we train the translation model on the external News Commentary parallel text.