Ali Hürriyetoğlu

Also published as: Ali Hurriyetoglu, Ali Hürriyetoǧlu


2024

pdf bib
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)
Ali Hürriyetoğlu | Hristo Tanev | Surendrabikram Thapa | Gökçe Uludoğan
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)

pdf bib
Team Curie at HSD-2Lang 2024: Hate Speech Detection in Turkish and Arabic Tweets using BERT-based models
Ehsan Barkhodar | Işık Topçu | Ali Hürriyetoğlu
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)

Team Curie at HSD-2Lang 2024: Team Curie at HSD-2Lang 2024: Hate Speech Detection in Turkish and Arabic Tweets using BERT-based models This paper has presented our methodologies and findings in tackling hate speech detection in Turkish and Arabic tweets as part of the HSD-2Lang 2024 contest. Through innovative approaches and the fine-tuning of BERT-based models, we have achieved notable F1 scores, demonstrating the potential of our models in addressing the linguistic challenges inherent in Turkish and Arabic languages. The ablation study for Subtask A provided valuable insights into the impact of preprocessing and data balancing on model performance, guiding future enhancements. Our work contributes to the broader goal of improving online content moderation and safety, with future research directions including the expansion to more languages and the integration of multi-modal data and explainable AI techniques.

pdf bib
Extended Multimodal Hate Speech Event Detection During Russia-Ukraine Crisis - Shared Task at CASE 2024
Surendrabikram Thapa | Kritesh Rauniyar | Farhan Jafri | Hariram Veeramani | Raghav Jain | Sandesh Jain | Francielle Vargas | Ali Hürriyetoğlu | Usman Naseem
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)

Addressing the need for effective hate speech moderation in contemporary digital discourse, the Multimodal Hate Speech Event Detection Shared Task made its debut at CASE 2023, co-located with RANLP 2023. Building upon its success, an extended version of the shared task was organized at the CASE workshop in EACL 2024. Similar to the earlier iteration, in this shared task, participants address hate speech detection through two subtasks. Subtask A is a binary classification problem, assessing whether text-embedded images contain hate speech. Subtask B goes further, demanding the identification of hate speech targets, such as individuals, communities, and organizations within text-embedded images. Performance is evaluated using the macro F1-score metric in both subtasks. With a total of 73 registered participants, the shared task witnessed remarkable achievements, with the best F1-scores in Subtask A and Subtask B reaching 87.27% and 80.05%, respectively, surpassing the leaderboard of the previous CASE 2023 shared task. This paper provides a comprehensive overview of the performance of seven teams that submitted results for Subtask A and five teams for Subtask B.

pdf bib
Stance and Hate Event Detection in Tweets Related to Climate Activism - Shared Task at CASE 2024
Surendrabikram Thapa | Kritesh Rauniyar | Farhan Jafri | Shuvam Shiwakoti | Hariram Veeramani | Raghav Jain | Guneet Singh Kohli | Ali Hürriyetoğlu | Usman Naseem
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)

Social media plays a pivotal role in global discussions, including on climate change. The variety of opinions expressed range from supportive to oppositional, with some instances of hate speech. Recognizing the importance of understanding these varied perspectives, the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) at EACL 2024 hosted a shared task focused on detecting stances and hate speech in climate activism-related tweets. This task was divided into three subtasks: subtasks A and B concentrated on identifying hate speech and its targets, while subtask C focused on stance detection. Participants’ performance was evaluated using the macro F1-score. With over 100 teams participating, the highest F1 scores achieved were 91.44% in subtask C, 78.58% in subtask B, and 74.83% in subtask A. This paper details the methodologies of 24 teams that submitted their results to the competition’s leaderboard.

pdf bib
A Concise Report of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text
Ali Hürriyetoğlu | Surendrabikram Thapa | Gökçe Uludoğan | Somaiyeh Dehghan | Hristo Tanev
Proceedings of the 7th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2024)

In this paper, we provide a brief overview of the 7th workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) co-located with EACL 2024. This workshop consisted of regular papers, system description papers submitted by shared task participants, and overview papers of shared tasks held. This workshop series has been bringing together experts and enthusiasts from technical and social science fields, providing a platform for better understanding event information. This workshop not only advances text-based event extraction but also facilitates research in event extraction in multimodal settings.

2023

pdf bib
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text
Ali Hürriyetoğlu | Hristo Tanev | Vanni Zavarella | Reyyan Yeniterzi | Erdem Yörük | Milena Slavcheva
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

pdf bib
Negative documents are positive: Improving event extraction performance using overlooked negative data
Osman Mutlu | Ali Hürriyetoğlu
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

The scarcity of data poses a significant challenge in closed-domain event extraction, as is common in complex NLP tasks. This limitation primarily arises from the intricate nature of the annotation process. To address this issue, we present a multi-task model structure and training approach that leverages the additional data, which is found as not having any event information at document and sentence levels, generated during the event annotation process. By incorporating this supplementary data, our proposed framework demonstrates enhanced robustness and, in some scenarios, improved performance. A particularly noteworthy observation is that including only negative documents in addition to the original data contributes to performance enhancement. Our findings offer promising insights into leveraging extra data to mitigate data scarcity challenges in closed-domain event extraction.

pdf bib
Event Causality Identification - Shared Task 3, CASE 2023
Fiona Anting Tan | Hansi Hettiarachchi | Ali Hürriyetoğlu | Nelleke Oostdijk | Onur Uca | Surendrabikram Thapa | Farhana Ferdousi Liza
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

The Event Causality Identification Shared Task of CASE 2023 is the second iteration of a shared task centered around the Causal News Corpus. Two subtasks were involved: In Subtask 1, participants were challenged to predict if a sentence contains a causal relation or not. In Subtask 2, participants were challenged to identify the Cause, Effect, and Signal spans given an input causal sentence. For both subtasks, participants uploaded their predictions for a held-out test set, and ranking was done based on binary F1 and macro F1 scores for Subtask 1 and 2, respectively. This paper includes an overview of the work of the ten teams that submitted their results to our competition and the six system description papers that were received. The highest F1 scores achieved for Subtask 1 and 2 were 84.66% and 72.79%, respectively.

pdf bib
Multimodal Hate Speech Event Detection - Shared Task 4, CASE 2023
Surendrabikram Thapa | Farhan Jafri | Ali Hürriyetoğlu | Francielle Vargas | Roy Ka-Wei Lee | Usman Naseem
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

Ensuring the moderation of hate speech and its targets emerges as a critical imperative within contemporary digital discourse. To facilitate this imperative, the shared task Multimodal Hate Speech Event Detection was organized in the sixth CASE workshop co-located at RANLP 2023. The shared task has two subtasks. The sub-task A required participants to pose hate speech detection as a binary problem i.e. they had to detect if the given text-embedded image had hate or not. Similarly, sub-task B required participants to identify the targets of the hate speech namely individual, community, and organization targets in text-embedded images. For both sub-tasks, the participants were ranked on the basis of the F1-score. The best F1-score in sub-task A and sub-task B were 85.65 and 76.34 respectively. This paper provides a comprehensive overview of the performance of 13 teams that submitted the results in Subtask A and 10 teams in Subtask B.

pdf bib
Detecting and Geocoding Battle Events from Social Media Messages on the Russo-Ukrainian War: Shared Task 2, CASE 2023
Hristo Tanev | Nicolas Stefanovitch | Andrew Halterman | Onur Uca | Vanni Zavarella | Ali Hurriyetoglu | Bertrand De Longueville | Leonida Della Rocca
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

The purpose of the shared task 2 at the Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) 2023 workshop was to test the abilities of the participating models and systems to detect and geocode armed conflicts events in social media messages from Telegram channels reporting on the Russo Ukrainian war. The evaluation followed an approach which was introduced in CASE 2021 (Giorgi et al., 2021): For each system we consider the correlation of the spatio-temporal distribution of its detected events and the events identified for the same period in the ACLED (Armed Conflict Location and Event Data Project) database (Raleigh et al., 2010). We use ACLED for the ground truth, since it is a well established standard in the field of event extraction and political trend analysis, which relies on human annotators for the encoding of security events using a fine grained taxonomy. Two systems participated in this shared task, we report in this paper on both the shared task and the participating systems.

pdf bib
Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2023): Workshop and Shared Task Report
Ali Hürriyetoğlu | Hristo Tanev | Osman Mutlu | Surendrabikram Thapa | Fiona Anting Tan | Erdem Yörük
Proceedings of the 6th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text

We provide a summary of the sixth edition of the CASE workshop that is held in the scope of RANLP 2023. The workshop consists of regular papers, three keynotes, working papers of shared task participants, and shared task overview papers. This workshop series has been bringing together all aspects of event information collection across technical and social science fields. In addition to contributing to the progress in text based event extraction, the workshop provides a space for the organization of a multimodal event information collection task.

pdf bib
RECESS: Resource for Extracting Cause, Effect, and Signal Spans
Fiona Anting Tan | Hansi Hettiarachchi | Ali Hürriyetoğlu | Nelleke Oostdijk | Tommaso Caselli | Tadashi Nomoto | Onur Uca | Farhana Ferdousi Liza | See-Kiong Ng
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

pdf bib
Socially Responsible Hate Speech Detection: Can Classifiers Reflect Social Stereotypes?
Francielle Vargas | Isabelle Carvalho | Ali Hürriyetoğlu | Thiago Pardo | Fabrício Benevenuto
Proceedings of the 14th International Conference on Recent Advances in Natural Language Processing

Recent studies have shown that hate speech technologies may propagate social stereotypes against marginalized groups. Nevertheless, there has been a lack of realistic approaches to assess and mitigate biased technologies. In this paper, we introduce a new approach to analyze the potential of hate-speech classifiers to reflect social stereotypes through the investigation of stereotypical beliefs by contrasting them with counter-stereotypes. We empirically measure the distribution of stereotypical beliefs by analyzing the distinctive classification of tuples containing stereotypes versus counter-stereotypes in machine learning models and datasets. Experiment results show that hate speech classifiers attribute unreal or negligent offensiveness to social identity groups by reflecting and reinforcing stereotypical beliefs regarding minorities. Furthermore, we also found that models that embed expert and context information from offensiveness markers present promising results to mitigate social stereotype bias towards socially responsible hate speech detection.

2022

pdf bib
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)
Ali Hürriyetoğlu | Hristo Tanev | Vanni Zavarella | Erdem Yörük
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

pdf bib
Zero-Shot Ranking Socio-Political Texts with Transformer Language Models to Reduce Close Reading Time
Kiymet Akdemir | Ali Hürriyetoğlu
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

We approach the classification problem as an entailment problem and apply zero-shot ranking to socio-political texts. Documents that are ranked at the top can be considered positively classified documents and this reduces the close reading time for the information extraction process. We use Transformer Language Models to get the entailment probabilities and investigate different types of queries. We find that DeBERTa achieves higher mean average precision scores than RoBERTa and when declarative form of the class label is used as a query, it outperforms dictionary definition of the class label. We show that one can reduce the close reading time by taking some percentage of the ranked documents that the percentage depends on how much recall they want to achieve. However, our findings also show that percentage of the documents that should be read increases as the topic gets broader.

pdf bib
Event Causality Identification with Causal News Corpus - Shared Task 3, CASE 2022
Fiona Anting Tan | Hansi Hettiarachchi | Ali Hürriyetoğlu | Tommaso Caselli | Onur Uca | Farhana Ferdousi Liza | Nelleke Oostdijk
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

The Event Causality Identification Shared Task of CASE 2022 involved two subtasks working on the Causal News Corpus. Subtask 1 required participants to predict if a sentence contains a causal relation or not. This is a supervised binary classification task. Subtask 2 required participants to identify the Cause, Effect and Signal spans per causal sentence. This could be seen as a supervised sequence labeling task. For both subtasks, participants uploaded their predictions for a held-out test set, and ranking was done based on binary F1 and macro F1 scores for Subtask 1 and 2, respectively. This paper summarizes the work of the 17 teams that submitted their results to our competition and 12 system description papers that were received. The best F1 scores achieved for Subtask 1 and 2 were 86.19% and 54.15%, respectively. All the top-performing approaches involved pre-trained language models fine-tuned to the targeted task. We further discuss these approaches and analyze errors across participants’ systems in this paper.

pdf bib
Tracking COVID-19 protest events in the United States. Shared Task 2: Event Database Replication, CASE 2022
Vanni Zavarella | Hristo Tanev | Ali Hürriyetoğlu | Peratham Wiriyathammabhum | Bertrand De Longueville
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

The goal of Shared Task 2 is evaluating state-of-the-art event detection systems by comparing the spatio-temporal distribution of the events they detect with existing event databases. The task focuses on some usability requirements of event detection systems in real worldscenarios. Namely, it aims to measure the ability of such a system to: (i) detect socio-political event mentions in news and social media, (ii) properly find their geographical locations, (iii) de-duplicate reports extracted from multiple sources referring to the same actual event. Building an annotated corpus for training and evaluating jointly these sub-tasks is highly time consuming. One possible way to indirectly evaluate a system’s output without an annotated corpus available is to measure its correlation with human-curated event data sets. In the last three years, the COVID-19 pandemic became motivation for restrictions and anti-pandemic measures on a world scale. This has triggered a wave of reactions and citizen actions in many countries. Shared Task 2 challenges participants to identify COVID-19 related protest actions from large unstructureddata sources both from mainstream and social media. We assess each system’s ability to model the evolution of protest events both temporally and spatially by using a number of correlation metrics with respect to a comprehensive and validated data set of COVID-related protest events (Raleigh et al., 2010).

pdf bib
Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2022): Workshop and Shared Task Report
Ali Hürriyetoğlu | Hristo Tanev | Vanni Zavarella | Reyyan Yeniterzi | Osman Mutlu | Erdem Yörük
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

We provide a summary of the fifth edition of the CASE workshop that is held in the scope of EMNLP 2022. The workshop consists of regular papers, two keynotes, working papers of shared task participants, and task overview papers. This workshop has been bringing together all aspects of event information collection across technical and social science fields. In addition to the progress in depth, the submission and acceptance of multimodal approaches show the widening of this interdisciplinary research topic.

pdf bib
Extended Multilingual Protest News Detection - Shared Task 1, CASE 2021 and 2022
Ali Hürriyetoğlu | Osman Mutlu | Fırat Duruşan | Onur Uca | Alaeddin Gürel | Benjamin J. Radford | Yaoyao Dai | Hansi Hettiarachchi | Niklas Stoehr | Tadashi Nomoto | Milena Slavcheva | Francielle Vargas | Aaqib Javid | Fatih Beyhan | Erdem Yörük
Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE)

We report results of the CASE 2022 Shared Task 1 on Multilingual Protest Event Detection. This task is a continuation of CASE 2021 that consists of four subtasks that are i) document classification, ii) sentence classification, iii) event sentence coreference identification, and iv) event extraction. The CASE 2022 extension consists of expanding the test data with more data in previously available languages, namely, English, Hindi, Portuguese, and Spanish, and adding new test data in Mandarin, Turkish, and Urdu for Sub-task 1, document classification. The training data from CASE 2021 in English, Portuguese and Spanish were utilized. Therefore, predicting document labels in Hindi, Mandarin, Turkish, and Urdu occurs in a zero-shot setting. The CASE 2022 workshop accepts reports on systems developed for predicting test data of CASE 2021 as well. We observe that the best systems submitted by CASE 2022 participants achieve between 79.71 and 84.06 F1-macro for new languages in a zero-shot setting. The winning approaches are mainly ensembling models and merging data in multiple languages. The best two submissions on CASE 2021 data outperform submissions from last year for Subtask 1 and Subtask 2 in all languages. Only the following scenarios were not outperformed by new submissions on CASE 2021: Subtask 3 Portuguese & Subtask 4 English.

pdf bib
A Multilingual Benchmark to Capture Olfactory Situations over Time
Stefano Menini | Teresa Paccosi | Sara Tonelli | Marieke Van Erp | Inger Leemans | Pasquale Lisena | Raphael Troncy | William Tullett | Ali Hürriyetoğlu | Ger Dijkstra | Femke Gordijn | Elias Jürgens | Josephine Koopman | Aron Ouwerkerk | Sanne Steen | Inna Novalija | Janez Brank | Dunja Mladenic | Anja Zidar
Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change

We present a benchmark in six European languages containing manually annotated information about olfactory situations and events following a FrameNet-like approach. The documents selection covers ten domains of interest to cultural historians in the olfactory domain and includes texts published between 1620 to 1920, allowing a diachronic analysis of smell descriptions. With this work, we aim to foster the development of olfactory information extraction approaches as well as the analysis of changes in smell descriptions over time.

pdf bib
The Causal News Corpus: Annotating Causal Relations in Event Sentences from News
Fiona Anting Tan | Ali Hürriyetoğlu | Tommaso Caselli | Nelleke Oostdijk | Tadashi Nomoto | Hansi Hettiarachchi | Iqra Ameer | Onur Uca | Farhana Ferdousi Liza | Tiancheng Hu
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Despite the importance of understanding causality, corpora addressing causal relations are limited. There is a discrepancy between existing annotation guidelines of event causality and conventional causality corpora that focus more on linguistics. Many guidelines restrict themselves to include only explicit relations or clause-based arguments. Therefore, we propose an annotation schema for event causality that addresses these concerns. We annotated 3,559 event sentences from protest event news with labels on whether it contains causal relations or not. Our corpus is known as the Causal News Corpus (CNC). A neural network built upon a state-of-the-art pre-trained language model performed well with 81.20% F1 score on test set, and 83.46% in 5-folds cross-validation. CNC is transferable across two external corpora: CausalTimeBank (CTB) and Penn Discourse Treebank (PDTB). Leveraging each of these external datasets for training, we achieved up to approximately 64% F1 on the CNC test set without additional fine-tuning. CNC also served as an effective training and pre-training dataset for the two external corpora. Lastly, we demonstrate the difficulty of our task to the layman in a crowd-sourced annotation exercise. Our annotated corpus is publicly available, providing a valuable resource for causal text mining researchers.

2021

pdf bib
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)
Ali Hürriyetoğlu
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

pdf bib
Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021): Workshop and Shared Task Report
Ali Hürriyetoğlu | Hristo Tanev | Vanni Zavarella | Jakub Piskorski | Reyyan Yeniterzi | Osman Mutlu | Deniz Yuret | Aline Villavicencio
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

This workshop is the fourth issue of a series of workshops on automatic extraction of socio-political events from news, organized by the Emerging Market Welfare Project, with the support of the Joint Research Centre of the European Commission and with contributions from many other prominent scholars in this field. The purpose of this series of workshops is to foster research and development of reliable, valid, robust, and practical solutions for automatically detecting descriptions of socio-political events, such as protests, riots, wars and armed conflicts, in text streams. This year workshop contributors make use of the state-of-the-art NLP technologies, such as Deep Learning, Word Embeddings and Transformers and cover a wide range of topics from text classification to news bias detection. Around 40 teams have registered and 15 teams contributed to three tasks that are i) multilingual protest news detection detection, ii) fine-grained classification of socio-political events, and iii) discovering Black Lives Matter protest events. The workshop also highlights two keynote and four invited talks about various aspects of creating event data sets and multi- and cross-lingual machine learning in few- and zero-shot settings.

pdf bib
PROTEST-ER: Retraining BERT for Protest Event Extraction
Tommaso Caselli | Osman Mutlu | Angelo Basile | Ali Hürriyetoğlu
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

We analyze the effect of further retraining BERT with different domain specific data as an unsupervised domain adaptation strategy for event extraction. Portability of event extraction models is particularly challenging, with large performance drops affecting data on the same text genres (e.g., news). We present PROTEST-ER, a retrained BERT model for protest event extraction. PROTEST-ER outperforms a corresponding generic BERT on out-of-domain data of 8.1 points. Our best performing models reach 51.91-46.39 F1 across both domains.

pdf bib
Multilingual Protest News Detection - Shared Task 1, CASE 2021
Ali Hürriyetoğlu | Osman Mutlu | Erdem Yörük | Farhana Ferdousi Liza | Ritesh Kumar | Shyam Ratan
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

Benchmarking state-of-the-art text classification and information extraction systems in multilingual, cross-lingual, few-shot, and zero-shot settings for socio-political event information collection is achieved in the scope of the shared task Socio-political and Crisis Events Detection at the workshop CASE @ ACL-IJCNLP 2021. Socio-political event data is utilized for national and international policy- and decision-making. Therefore, the reliability and validity of these datasets are of the utmost importance. We split the shared task into three parts to address the three aspects of data collection (Task 1), fine-grained semantic classification (Task 2), and evaluation (Task 3). Task 1, which is the focus of this report, is on multilingual protest news detection and comprises four subtasks that are document classification (subtask 1), sentence classification (subtask 2), event sentence coreference identification (subtask 3), and event extraction (subtask 4). All subtasks had English, Portuguese, and Spanish for both training and evaluation data. Data in Hindi language was available only for the evaluation of subtask 1. The majority of the submissions, which are 238 in total, are created using multi- and cross-lingual approaches. Best scores are above 77.27 F1-macro for subtask 1, above 85.32 F1-macro for subtask 2, above 84.23 CoNLL 2012 average score for subtask 3, and above 66.20 F1-macro for subtask 4 in all evaluation settings. The performance of the best system for subtask 4 is above 66.20 F1 for all available languages. Although there is still a significant room for improvement in cross-lingual and zero-shot settings, the best submissions for each evaluation scenario yield remarkable results. Monolingual models outperformed the multilingual models in a few evaluation scenarios.

pdf bib
Discovering Black Lives Matter Events in the United States: Shared Task 3, CASE 2021
Salvatore Giorgi | Vanni Zavarella | Hristo Tanev | Nicolas Stefanovitch | Sy Hwang | Hansi Hettiarachchi | Tharindu Ranasinghe | Vivek Kalyan | Paul Tan | Shaun Tan | Martin Andrews | Tiancheng Hu | Niklas Stoehr | Francesco Ignazio Re | Daniel Vegh | Dennis Atzenhofer | Brenda Curtis | Ali Hürriyetoğlu
Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)

Evaluating the state-of-the-art event detection systems on determining spatio-temporal distribution of the events on the ground is performed unfrequently. But, the ability to both (1) extract events “in the wild” from text and (2) properly evaluate event detection systems has potential to support a wide variety of tasks such as monitoring the activity of socio-political movements, examining media coverage and public support of these movements, and informing policy decisions. Therefore, we study performance of the best event detection systems on detecting Black Lives Matter (BLM) events from tweets and news articles. The murder of George Floyd, an unarmed Black man, at the hands of police officers received global attention throughout the second half of 2020. Protests against police violence emerged worldwide and the BLM movement, which was once mostly regulated to the United States, was now seeing activity globally. This shared task asks participants to identify BLM related events from large unstructured data sources, using systems pretrained to extract socio-political events from text. We evaluate several metrics, accessing each system’s ability to identify protest events both temporally and spatially. Results show that identifying daily protest counts is an easier task than classifying spatial and temporal protest trends simultaneously, with maximum performance of 0.745 and 0.210 (Pearson r), respectively. Additionally, all baselines and participant systems suffered from low recall, with a maximum recall of 5.08.

2020

pdf bib
Proceedings of the Workshop on Automated Extraction of Socio-political Events from News 2020
Ali Hürriyetoğlu | Erdem Yörük | Vanni Zavarella | Hristo Tanev
Proceedings of the Workshop on Automated Extraction of Socio-political Events from News 2020

pdf bib
Automated Extraction of Socio-political Events from News (AESPEN): Workshop and Shared Task Report
Ali Hürriyetoğlu | Vanni Zavarella | Hristo Tanev | Erdem Yörük | Ali Safaya | Osman Mutlu
Proceedings of the Workshop on Automated Extraction of Socio-political Events from News 2020

We describe our effort on automated extraction of socio-political events from news in the scope of a workshop and a shared task we organized at Language Resources and Evaluation Conference (LREC 2020). We believe the event extraction studies in computational linguistics and social and political sciences should further support each other in order to enable large scale socio-political event information collection across sources, countries, and languages. The event consists of regular research papers and a shared task, which is about event sentence coreference identification (ESCI), tracks. All submissions were reviewed by five members of the program committee. The workshop attracted research papers related to evaluation of machine learning methodologies, language resources, material conflict forecasting, and a shared task participation report in the scope of socio-political event information collection. It has shown us the volume and variety of both the data sources and event information collection approaches related to socio-political events and the need to fill the gap between automated text processing techniques and requirements of social and political sciences.

pdf bib
Analyzing ELMo and DistilBERT on Socio-political News Classification
Berfu Büyüköz | Ali Hürriyetoğlu | Arzucan Özgür
Proceedings of the Workshop on Automated Extraction of Socio-political Events from News 2020

This study evaluates the robustness of two state-of-the-art deep contextual language representations, ELMo and DistilBERT, on supervised learning of binary protest news classification (PC) and sentiment analysis (SA) of product reviews. A ”cross-context” setting is enabled using test sets that are distinct from the training data. The models are fine-tuned and fed into a Feed-Forward Neural Network (FFNN) and a Bidirectional Long Short Term Memory network (BiLSTM). Multinomial Naive Bayes (MNB) and Linear Support Vector Machine (LSVM) are used as traditional baselines. The results suggest that DistilBERT can transfer generic semantic knowledge to other domains better than ELMo. DistilBERT is also 30% smaller and 83% faster than ELMo, which suggests superiority for smaller computational training budgets. When generalization is not the utmost preference and test domain is similar to the training domain, the traditional machine learning (ML) algorithms can still be considered as more economic alternatives to deep language representations.

pdf bib
COVCOR20 at WNUT-2020 Task 2: An Attempt to Combine Deep Learning and Expert rules
Ali Hürriyetoğlu | Ali Safaya | Osman Mutlu | Nelleke Oostdijk | Erdem Yörük
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

In the scope of WNUT-2020 Task 2, we developed various text classification systems, using deep learning models and one using linguistically informed rules. While both of the deep learning systems outperformed the system using the linguistically informed rules, we found that through the integration of (the output of) the three systems a better performance could be achieved than the standalone performance of each approach in a cross-validation setting. However, on the test data the performance of the integration was slightly lower than our best performing deep learning model. These results hardly indicate any progress in line of integrating machine learning and expert rules driven systems. We expect that the release of the annotation manuals and gold labels of the test data after this workshop will shed light on these perplexing results.

2014

pdf bib
Event Extraction for Balkan Languages
Vanni Zavarella | Dilek Küçük | Hristo Tanev | Ali Hürriyetoğlu
Proceedings of the Demonstrations at the 14th Conference of the European Chapter of the Association for Computational Linguistics

pdf bib
Estimating Time to Event from Tweets Using Temporal Expressions
Ali Hürriyetoǧlu | Nelleke Oostdijk | Antal van den Bosch
Proceedings of the 5th Workshop on Language Analysis for Social Media (LASM)

2011

pdf bib
Creating Sentiment Dictionaries via Triangulation
Josef Steinberger | Polina Lenkova | Mohamed Ebrahim | Maud Ehrmann | Ali Hurriyetoglu | Mijail Kabadjov | Ralf Steinberger | Hristo Tanev | Vanni Zavarella | Silvia Vázquez
Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA 2.011)

Search
Co-authors
Fix data