Hallucinations and off-target translation remain unsolved problems in MT, especially for low-resource languages and massively multilingual models. In this paper, we introduce two related methods to mitigate these failure cases with a modified decoding objective, without either requiring retraining or external models. In source-contrastive decoding, we search for a translation that is probable given the correct input, but improbable given a random input segment. In language-contrastive decoding, we search for a translation that is probable, but improbable given the wrong language indicator token. Experiments on the massively multilingual models M2M-100 (418M) and SMaLL-100 show that these methods suppress hallucinations and off-target translations, reducing the number of translations with segment-level chrF2 below 10 by 67-83% on average across 57 tested translation directions. In a proof of concept on out-of-English translation, we also show that we can suppress off-target translations with large language models. We release code upon acceptance.
Massively multilingual machine translation models allow for the translation of a large number of languages with a single model, but have limited performance on low- and very-low-resource translation directions. Pivoting via high-resource languages remains a strong strategy for low-resource directions, and in this paper we revisit ways of pivoting through multiple languages. Previous work has used a simple averaging of probability distributions from multiple paths, but we find that this performs worse than using a single pivot, and exacerbates the hallucination problem because the same hallucinations can be probable across different paths. We also propose MaxEns, a novel combination strategy that makes the output biased towards the most confident predictions, hypothesising that confident predictions are less prone to be hallucinations. We evaluate different strategies on the FLORES benchmark for 20 low-resource language directions, demonstrating that MaxEns improves translation quality for low-resource languages while reducing hallucination in translations, compared to both direct translation and an averaging approach. On average, multi-pivot strategies still lag behind using English as a single pivot language, raising the question of how to identify the best pivoting strategy for a given translation direction.
We argue that Transformers are essentially graph-to-graph models, with sequences just being a special case. Attention weights are functionally equivalent to graph edges. Our Graph-to-Graph Transformer architecture makes this ability explicit, by inputting graph edges into the attention weight computations and predicting graph edges with attention-like functions, thereby integrating explicit graphs into the latent graphs learned by pretrained Transformers. Adding iterative graph refinement provides a joint embedding of input, output, and latent graphs, allowing non-autoregressive graph prediction to optimise the complete graph without any bespoke pipeline or decoding strategy. Empirical results show that this architecture achieves state-of-the-art accuracies for modelling a variety of linguistic structures, integrating very effectively with the latent linguistic representations learned by pretraining.
Existing metrics for evaluating the quality of automatically generated questions such as BLEU, ROUGE, BERTScore, and BLEURT compare the reference and predicted questions, providing a high score when there is a considerable lexical overlap or semantic similarity between the candidate and the reference questions. This approach has two major shortcomings. First, we need expensive human-provided reference questions. Second, it penalises valid questions that may not have high lexical or semantic similarity to the reference questions. In this paper, we propose a new metric, RQUGE, based on the answerability of the candidate question given the context. The metric consists of a question-answering and a span scorer modules, using pre-trained models from existing literature, thus it can be used without any further training. We demonstrate that RQUGE has a higher correlation with human judgment without relying on the reference question. Additionally, RQUGE is shown to be more robust to several adversarial corruptions. Furthermore, we illustrate that we can significantly improve the performance of QA models on out-of-domain datasets by fine-tuning on synthetic data generated by a question generation model and reranked by RQUGE.
Recent models have shown that incorporating syntactic knowledge into the semantic role labelling (SRL) task leads to a significant improvement. In this paper, we propose Syntax-aware Graph-to-Graph Transformer (SynG2G-Tr) model, which encodes the syntactic structure using a novel way to input graph relations as embeddings, directly into the self-attention mechanism of Transformer. This approach adds a soft bias towards attention patterns that follow the syntactic structure but also allows the model to use this information to learn alternative patterns. We evaluate our model on both span-based and dependency-based SRL datasets, and outperform previous alternative methods in both in-domain and out-of-domain settings, on CoNLL 2005 and CoNLL 2009 datasets.
In recent years, multilingual machine translation models have achieved promising performance on low-resource language pairs by sharing information between similar languages, thus enabling zero-shot translation. To overcome the “curse of multilinguality”, these models often opt for scaling up the number of parameters, which makes their use in resource-constrained environments challenging. We introduce SMaLL-100, a distilled version of the M2M-100(12B) model, a massively multilingual machine translation model covering 100 languages. We train SMaLL-100 with uniform sampling across all language pairs and therefore focus on preserving the performance of low-resource languages. We evaluate SMaLL-100 on different low-resource benchmarks: FLORES-101, Tatoeba, and TICO-19 and demonstrate that it outperforms previous massively multilingual models of comparable sizes (200-600M) while improving inference latency and memory usage. Additionally, our model achieves comparable results to M2M-100 (1.2B), while being 3.6x smaller and 4.3x faster at inference.
Recently, very large pre-trained models achieve state-of-the-art results in various natural language processing (NLP) tasks, but their size makes it more challenging to apply them in resource-constrained environments. Compression techniques allow to drastically reduce the size of the models and therefore their inference time with negligible impact on top-tier metrics. However, the general performance averaged across multiple tasks and/or languages may hide a drastic performance drop on under-represented features, which could result in the amplification of biases encoded by the models. In this work, we assess the impact of compression methods on Multilingual Neural Machine Translation models (MNMT) for various language groups, gender, and semantic biases by extensive analysis of compressed models on different machine translation benchmarks, i.e. FLORES-101, MT-Gender, and DiBiMT. We show that the performance of under-represented languages drops significantly, while the average BLEU metric only slightly decreases. Interestingly, the removal of noisy memorization with compression leads to a significant improvement for some medium-resource languages. Finally, we demonstrate that compression amplifies intrinsic gender and semantic biases, even in high-resource languages.
Recognizing and categorizing lexical collocations in context is useful for language learning, dictionary compilation and downstream NLP. However, it is a challenging task due to the varying degrees of frozenness lexical collocations exhibit. In this paper, we put forward a sequence tagging BERT-based model enhanced with a graph-aware transformer architecture, which we evaluate on the task of collocation recognition in context. Our results suggest that explicitly encoding syntactic dependencies in the model architecture is helpful, and provide insights on differences in collocation typification in English, Spanish and French.
We describe the DCU-EPFL submission to the IWPT 2021 Parsing Shared Task: From Raw Text to Enhanced Universal Dependencies. The task involves parsing Enhanced UD graphs, which are an extension of the basic dependency trees designed to be more facilitative towards representing semantic structure. Evaluation is carried out on 29 treebanks in 17 languages and participants are required to parse the data from each language starting from raw strings. Our approach uses the Stanza pipeline to preprocess the text files, XLM-RoBERTa to obtain contextualized token representations, and an edge-scoring and labeling model to predict the enhanced graph. Finally, we run a postprocessing script to ensure all of our outputs are valid Enhanced UD graphs. Our system places 6th out of 9 participants with a coarse Enhanced Labeled Attachment Score (ELAS) of 83.57. We carry out additional post-deadline experiments which include using Trankit for pre-processing, XLM-RoBERTa LARGE, treebank concatenation, and multitask learning between a basic and an enhanced dependency parser. All of these modifications improve our initial score and our final system has a coarse ELAS of 88.04.
We propose the Recursive Non-autoregressive Graph-to-Graph Transformer architecture (RNGTr) for the iterative refinement of arbitrary graphs through the recursive application of a non-autoregressive Graph-to-Graph Transformer and apply it to syntactic dependency parsing. We demonstrate the power and effectiveness of RNGTr on several dependency corpora, using a refinement model pre-trained with BERT. We also introduce Syntactic Transformer (SynTr), a non-recursive parser similar to our refinement model. RNGTr can improve the accuracy of a variety of initial parsers on 13 languages from the Universal Dependencies Treebanks, English and Chinese Penn Treebanks, and the German CoNLL2009 corpus, even improving over the new state-of-the-art results achieved by SynTr, significantly improving the state-of-the-art for all corpora tested.
We propose the Graph2Graph Transformer architecture for conditioning on and predicting arbitrary graphs, and apply it to the challenging task of transition-based dependency parsing. After proposing two novel Transformer models of transition-based dependency parsing as strong baselines, we show that adding the proposed mechanisms for conditioning on and predicting graphs of Graph2Graph Transformer results in significant improvements, both with and without BERT pre-training. The novel baselines and their integration with Graph2Graph Transformer significantly outperform the state-of-the-art in traditional transition-based dependency parsing on both English Penn Treebank, and 13 languages of Universal Dependencies Treebanks. Graph2Graph Transformer can be integrated with many previous structured prediction methods, making it easy to apply to a wide range of NLP tasks.
In this paper, we propose a new approach to learn multimodal multilingual embeddings for matching images and their relevant captions in two languages. We combine two existing objective functions to make images and captions close in a joint embedding space while adapting the alignment of word embeddings between existing languages in our model. We show that our approach enables better generalization, achieving state-of-the-art performance in text-to-image and image-to-text retrieval task, and caption-caption similarity task. Two multimodal multilingual datasets are used for evaluation: Multi30k with German and English captions and Microsoft-COCO with English and Japanese captions.
In this paper, we propose a new approach to learn multimodal multilingual embeddings for matching images and their relevant captions in two languages. We combine two existing objective functions to make images and captions close in a joint embedding space while adapting the alignment of word embeddings between existing languages in our model. We show that our approach enables better generalization, achieving state-of-the-art performance in text-to-image and image-to-text retrieval task, and caption-caption similarity task. Two multimodal multilingual datasets are used for evaluation: Multi30k with German and English captions and Microsoft-COCO with English and Japanese captions.