Arpit Gupta


2024

pdf bib
Prompting Vision-Language Models For Aspect-Controlled Generation of Referring Expressions
Danfeng Guo | Sanchit Agarwal | Arpit Gupta | Jiun-Yu Kao | Emre Barut | Tagyoung Chung | Jing Huang | Mohit Bansal
Findings of the Association for Computational Linguistics: NAACL 2024

Referring Expression Generation (REG) is the task of generating a description that unambiguously identifies a given target in the scene. Different from Image Captioning (IC), REG requires learning fine-grained characteristics of not only the scene objects but also their surrounding context. Referring expressions are usually not singular; an object can often be uniquely referenced in numerous ways, for instance, by color, by location, or by relationship with other objects. Most prior works, however, have not explored this ‘aspect-based multiplicity’ of referring expressions. Hence, in this work, we focus on the Aspect-Controlled REG task, which requires generating a referring expression conditioned on the input aspect(s), where an aspect captures a style of reference. By changing the input aspect such as color, location, action etc., one can generate multiple distinct expressions per target region. To solve this new task, we first modify BLIP for aligning image-regions and text-expressions. We achieve this through a novel approach for feeding the input by drawing a bounding box around the target image-region and prompting the model to generate the referring expression. Our base REG model already beats all prior works in CIDEr score. To tackle Aspect-Controlled REG, we append ‘aspect tokens’ to the prompt and show that distinct expressions can be generated by just changing the prompt. Finally, to prove the high-quality and diversity of the data generated by our proposed aspect-controlled REG model, we also perform data-augmentation-based evaluation on the downstream Referring Expression Comprehension (REC) task. With just half of the real data augmented with the generated synthetic data, we achieve performance comparable to training with 100% of real data, using a SOTA REC model.

pdf bib
Mitigating Bias for Question Answering Models by Tracking Bias Influence
Mingyu Ma | Jiun-Yu Kao | Arpit Gupta | Yu-Hsiang Lin | Wenbo Zhao | Tagyoung Chung | Wei Wang | Kai-Wei Chang | Nanyun Peng
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Models of various NLP tasks have been shown to exhibit stereotypes, and the bias in the question answering (QA) models is especially harmful as the output answers might be directly consumed by the end users. There have been datasets to evaluate bias in QA models, while bias mitigation technique for the QA models is still under-explored. In this work, we propose BMBI, an approach to mitigate the bias of multiple-choice QA models. Based on the intuition that a model would lean to be more biased if it learns from a biased example, we measure the bias level of a query instance by observing its influence on another instance. If the influenced instance is more biased, we derive that the query instance is biased. We then use the bias level detected as an optimization objective to form a multi-task learning setting in addition to the original QA task. We further introduce a new bias evaluation metric to quantify bias in a comprehensive and sensitive way. We show that our method could be applied to multiple QA formulations across multiple bias categories. It can significantly reduce the bias level in all 9 bias categories in the BBQ dataset while maintaining comparable QA accuracy.

2023

pdf bib
SPC: Soft Prompt Construction for Cross Domain Generalization
Wenbo Zhao | Arpit Gupta | Tagyoung Chung | Jing Huang
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

Recent advances in prompt tuning have proven effective as a new language modeling paradigm for various natural language understanding tasks. However, it is challenging to adapt the soft prompt embeddings to different domains or generalize to low-data settings when learning soft prompts itself is unstable, task-specific, and bias-prone. This paper proposes a principled learning framework—soft prompt construction (SPC)—to facilitate learning domain-adaptable soft prompts. Derived from the SPC framework is a simple loss that can plug into various models and tuning approaches to improve their cross-domain performance. We show SPC can improve upon SOTA for contextual query rewriting, summarization, and paraphrase detection by up to 5%, 19%, and 16%, respectively.

2022

pdf bib
GRAVL-BERT: Graphical Visual-Linguistic Representations for Multimodal Coreference Resolution
Danfeng Guo | Arpit Gupta | Sanchit Agarwal | Jiun-Yu Kao | Shuyang Gao | Arijit Biswas | Chien-Wei Lin | Tagyoung Chung | Mohit Bansal
Proceedings of the 29th International Conference on Computational Linguistics

Learning from multimodal data has become a popular research topic in recent years. Multimodal coreference resolution (MCR) is an important task in this area. MCR involves resolving the references across different modalities, e.g., text and images, which is a crucial capability for building next-generation conversational agents. MCR is challenging as it requires encoding information from different modalities and modeling associations between them. Although significant progress has been made for visual-linguistic tasks such as visual grounding, most of the current works involve single turn utterances and focus on simple coreference resolutions. In this work, we propose an MCR model that resolves coreferences made in multi-turn dialogues with scene images. We present GRAVL-BERT, a unified MCR framework which combines visual relationships between objects, background scenes, dialogue, and metadata by integrating Graph Neural Networks with VL-BERT. We present results on the SIMMC 2.0 multimodal conversational dataset, achieving the rank-1 on the DSTC-10 SIMMC 2.0 MCR challenge with F1 score 0.783. Our code is available at https://github.com/alexa/gravl-bert.

2019

pdf bib
Scaling Multi-Domain Dialogue State Tracking via Query Reformulation
Pushpendre Rastogi | Arpit Gupta | Tongfei Chen | Mathias Lambert
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

We present a novel approach to dialogue state tracking and referring expression resolution tasks. Successful contextual understanding of multi-turn spoken dialogues requires resolving referring expressions across turns and tracking the entities relevant to the conversation across turns. Tracking conversational state is particularly challenging in a multi-domain scenario when there exist multiple spoken language understanding (SLU) sub-systems, and each SLU sub-system operates on its domain-specific meaning representation. While previous approaches have addressed the disparate schema issue by learning candidate transformations of the meaning representation, in this paper, we instead model the reference resolution as a dialogue context-aware user query reformulation task – the dialog state is serialized to a sequence of natural language tokens representing the conversation. We develop our model for query reformulation using a pointer-generator network and a novel multi-task learning setup. In our experiments, we show a significant improvement in absolute F1 on an internal as well as a, soon to be released, public benchmark respectively.