2024
pdf
bib
abs
Towards Objectively Benchmarking Social Intelligence of Language Agents at the Action Level
Chenxu Wang
|
Bin Dai
|
Huaping Liu
|
Baoyuan Wang
Findings of the Association for Computational Linguistics: ACL 2024
Prominent large language models have exhibited human-level performance in many domains, even enabling the derived agents to simulate human and social interactions. While practical works have substantiated the practicability of grounding language agents in sandbox simulation or embodied simulators, current social intelligence benchmarks either stay at the language level or use subjective metrics. In pursuit of a more realistic and objective evaluation, we introduce the Social Tasks in Sandbox Simulation (STSS) benchmark, which assesses language agents objectively at the action level by scrutinizing the goal achievements within the multi-agent simulation.Additionally, we sample conversation scenarios to build a language-level benchmark to provide an economically prudent preliminary evaluation and align with prevailing benchmarks. To gauge the significance of agent architecture, we implement a target-driven planning (TDP) module as an adjunct to the existing agent. Our evaluative findings highlight that the STSS benchmark is challenging for state-of-the-art language agents. Furthermore, it effectively discriminates between distinct language agents, suggesting its usefulness as a benchmark for evaluating both language models and agent architectures. Our code is available at https://github.com/wcx21/Social-Tasks-in-Sandbox-Simulation.
pdf
bib
abs
From Good to Great: Improving Math Reasoning with Tool-Augmented Interleaf Prompting
Nuo Chen
|
Hongguang Li
|
Baoyuan Wang
|
Jia Li
Proceedings of the 2nd Workshop on Natural Language Reasoning and Structured Explanations (@ACL 2024)
This paper investigates the performance of Large Language Models (LLMs) and Tool-augmented LLMs in tackling complex mathematical reasoning tasks. We introduce IMR-TIP: Improving Math Reasoning with Tool-augmented Interleaf Prompting, a framework that combines the strengths of both LLMs and Tool-augmented LLMs. IMR-TIP follows the “From Good to Great” concept, collecting multiple potential solutions from both LLMs and their Tool-Augmented counterparts for the same math problem, and then selecting or re-generating the most accurate answer after cross-checking these solutions via tool-augmented interleaf prompting. The framework incorporates two key aspects: self-prompt and tool-augmented interleaf prompting (TIP). The former allows LLMs to autonomously refine and improve an initial prompt related to tool usage, while the latter enables LLMs to derive the final answer by dynamically analyzing the problem, cross-checking potential solutions, and revising previous reasoning hints in an interleaved manner. Experimental analysis shows that IMR-TIP achieves enhanced mathematical capabilities and outperforms traditional LLMs and tool-augmented LLMs in accuracy and reasoning diversity on math reasoning tasks. For instance, IMR-TIP can improve Tool-augmented ChatGPT on GSM8K-Hard from 56.0% to 65.2 %.
2023
pdf
bib
abs
Hierarchical Verbalizer for Few-Shot Hierarchical Text Classification
Ke Ji
|
Yixin Lian
|
Jingsheng Gao
|
Baoyuan Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Due to the complex label hierarchy and intensive labeling cost in practice, the hierarchical text classification (HTC) suffers a poor performance especially when low-resource or few-shot settings are considered. Recently, there is a growing trend of applying prompts on pre-trained language models (PLMs), which has exhibited effectiveness in the few-shot flat text classification tasks. However, limited work has studied the paradigm of prompt-based learning in the HTC problem when the training data is extremely scarce. In this work, we define a path-based few-shot setting and establish a strict path-based evaluation metric to further explore few-shot HTC tasks. To address the issue, we propose the hierarchical verbalizer (“HierVerb”), a multi-verbalizer framework treating HTC as a single- or multi-label classification problem at multiple layers and learning vectors as verbalizers constrained by hierarchical structure and hierarchical contrastive learning. In this manner, HierVerb fuses label hierarchy knowledge into verbalizers and remarkably outperforms those who inject hierarchy through graph encoders, maximizing the benefits of PLMs. Extensive experiments on three popular HTC datasets under the few-shot settings demonstrate that prompt with HierVerb significantly boosts the HTC performance, meanwhile indicating an elegant way to bridge the gap between the large pre-trained model and downstream hierarchical classification tasks.
pdf
bib
abs
LiveChat: A Large-Scale Personalized Dialogue Dataset Automatically Constructed from Live Streaming
Jingsheng Gao
|
Yixin Lian
|
Ziyi Zhou
|
Yuzhuo Fu
|
Baoyuan Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Open-domain dialogue systems have made promising progress in recent years. While the state-of-the-art dialogue agents are built upon large-scale social media data and large pre-trained models, there is no guarantee these agents could also perform well in fast-growing scenarios, such as live streaming, due to the bounded transferability of pre-trained models and biased distributions of public datasets from Reddit and Weibo, etc. To improve the essential capability of responding and establish a benchmark in the live open-domain scenario, we introduce the LiveChat dataset, composed of 1.33 million real-life Chinese dialogues with almost 3800 average sessions across 351 personas and fine-grained profiles for each persona. LiveChat is automatically constructed by processing numerous live videos on the Internet and naturally falls within the scope of multi-party conversations, where the issues of Who says What to Whom should be considered. Therefore, we target two critical tasks of response modeling and addressee recognition and propose retrieval-based baselines grounded on advanced techniques. Experimental results have validated the positive effects of leveraging persona profiles and larger average sessions per persona. In addition, we also benchmark the transferability of advanced generation-based models on LiveChat and pose some future directions for current challenges.
pdf
bib
abs
DialCoT Meets PPO: Decomposing and Exploring Reasoning Paths in Smaller Language Models
Chengcheng Han
|
Xiaowei Du
|
Che Zhang
|
Yixin Lian
|
Xiang Li
|
Ming Gao
|
Baoyuan Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Chain-of-Thought (CoT) prompting has successfully enhanced the reasoning capabilities of Large Language Models (LLMs) with at least 100 billion parameters. However, it is ineffective, or even detrimental, to the performance on reasoning tasks in Smaller Language Models (SLMs) with less than 10 billion parameters. In this paper, we propose Dialogue-guided Chain-of-Thought (DialCoT) to improve the reasoning capabilities of SLMs, with the aim of generating intermediate reasoning steps in a dialogue format to guide the model to the final answer. Furthermore, we optimize the model to choose the optimal reasoning path through the Proximal Policy Optimization (PPO) algorithm, further enhancing its reasoning capabilities. Compared to previous methods, our advantages lie in: 1) We transform the process of solving complex reasoning problems into decomposing problems and solving a series of simpler sub-questions, significantly reducing task difficulty and making it more suitable for SLMs. 2) We optimize the model to choose the optimal reasoning path through the PPO algorithm. Comprehensive experiments on four arithmetic reasoning datasets show that our method can achieve significant performance gains over state-of-the-art competitors.
pdf
bib
abs
Triplet-Free Knowledge-Guided Response Generation
Dongming Li
|
Jianfeng Liu
|
Baoyuan Wang
Findings of the Association for Computational Linguistics: ACL 2023
Generating vivid and informative responses (e.g., comments for social posts and utterances for dialogues) is challenging without giving relevant knowledge. Prior works focus on constructing the ”latent” knowledge first and then learning how to ”ground” it based on pseudo (context, knowledge, response) triplets. However, the retrieval between real responses and their latent knowledge is difficult in nature. In this paper, instead of focusing on how to ground knowledge given the responses, we take a different perspective to optimize the final responses for given guided knowledge directly. This allows us to re-formulate the entire problem in a simplified yet more scalable way. Specifically, we pretrain a response language model (LM) to measure the relevance and consistency between any context and response, then use search engines to collect the top-ranked passages to serve as the guiding knowledge without explicitly optimizing the ‘‘best” latent knowledge that corresponds to a given response. The final response generation model is trained through reinforcement learning by taking both the response LM prior and knowledge-injection rate as rewards. For better evaluations, we construct a new Chinese benchmark, ”IceKC”, using fresh multimodal online social posts. Both automatic evaluations and human evaluations show our zero-resource approach performs significantly better than prior works.
pdf
bib
abs
Natural Response Generation for Chinese Reading Comprehension
Nuo Chen
|
Hongguang Li
|
Yinan Bao
|
Baoyuan Wang
|
Jia Li
Findings of the Association for Computational Linguistics: EMNLP 2023
Machine reading comprehension (MRC) is an important area of conversation agents and draws a lot of attention. However, there is a notable limitation to current MRC benchmarks: The labeled answers are mostly either spans extracted from the target corpus or the choices of the given candidates, ignoring the natural aspect of high-quality responses. As a result, MRC models trained on these datasets can not generate human-like responses in real QA scenarios. To this end, we construct a new dataset called Penguin to promote the research of MRC, providing a training and test bed for natural response generation to real scenarios. Concretely, Penguin consists of 200k training data with high-quality fluent, and well-informed responses. Penguin is the first benchmark towards natural response generation in Chinese MRC on a relatively large scale. To address the challenges in Penguin, we develop two strong baselines: end-to-end and two-stage frameworks. Following that, we further design Prompt-BART: fine-tuning the pre-trained generative language models with a mixture of prefix prompts in Penguin. Extensive experiments validated the effectiveness of this design.
pdf
bib
abs
Orca: A Few-shot Benchmark for Chinese Conversational Machine Reading Comprehension
Nuo Chen
|
Hongguang Li
|
Junqing He
|
Yinan Bao
|
Xinshi Lin
|
Qi Yang
|
Jianfeng Liu
|
Ruyi Gan
|
Jiaxing Zhang
|
Baoyuan Wang
|
Jia Li
Findings of the Association for Computational Linguistics: EMNLP 2023
The conversational machine reading comprehension (CMRC) task aims to answer questions in conversations, which has been a hot research topic in recent years because of its wide applications. However, existing CMRC benchmarks in which each conversation is assigned a static passage are inconsistent with real scenarios. Thus, model’s comprehension ability towards real scenarios are hard to evaluate reasonably. To this end, we propose the first Chinese CMRC benchmark Orca and further provide zero-shot/few-shot settings to evaluate model’s generalization ability towards diverse domains. We collect 831 hot-topic driven conversations with 4,742 turns in total. Each turn of a conversation is assigned with a response-related passage, aiming to evaluate model’s comprehension ability more reasonably. The topics of conversations are collected from social media platform and cover 33 domains, trying to be consistent with real scenarios. Importantly, answers in Orca are all well-annotated natural responses rather than the specific spans or short phrase in previous datasets. Besides, we implement three strong baselines to tackle the challenge in Orca. The results indicate the great challenge of our CMRC benchmark.