Cheng-Han Chiang


2024

pdf bib
Large Language Model as an Assignment Evaluator: Insights, Feedback, and Challenges in a 1000+ Student Course
Cheng-Han Chiang | Wei-Chih Chen | Chun-Yi Kuan | Chienchou Yang | Hung-yi Lee
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Using large language models (LLMs) for automatic evaluation has become an important evaluation method in NLP research. However, it is unclear whether these LLM-based evaluators can be effectively applied in real-world classrooms to assess student assignments. This empirical report shares how we use GPT-4 as an automatic assignment evaluator in a university course with over 1000 students. Based on student responses, we found that LLM-based assignment evaluators are generally acceptable to students when they have free access to these tools. However, students also noted that the LLM sometimes fails to adhere to the evaluation instructions, resulting in unreasonable assessments. Additionally, we observed that students can easily manipulate the LLM to output specific strings, allowing them to achieve high scores without meeting the assignment rubric. Based on student feedback and our experience, we offer several recommendations for effectively integrating LLMs into future classroom evaluations. Our observation also highlights potential directions for improving LLM-based evaluators, including their instruction-following ability and vulnerability to prompt hacking.

pdf bib
Merging Facts, Crafting Fallacies: Evaluating the Contradictory Nature of Aggregated Factual Claims in Long-Form Generations
Cheng-Han Chiang | Hung-yi Lee
Findings of the Association for Computational Linguistics: ACL 2024

Long-form generations from large language models (LLMs) contain a mix of factual and non-factual claims, making evaluating factuality difficult.Prior works evaluate the factuality of a long paragraph by decomposing it into multiple facts, verifying those facts independently, and aggregating the results.Such methods assume that combining factual claims forms a factual paragraph.The above assumption can be violated: we show that strong open-source models like Llama-chat can generate paragraphs that contain verifiable facts, but the facts are combined into a non-factual paragraph due to entity ambiguity.We further reveal that existing factuality metrics, including FActScore and citation recall, cannot properly evaluate these non-factual paragraphs and overestimate their factuality.To address this, we introduce an enhanced metric, **D-FActScore**, specifically designed for content with ambiguous entities.We evaluate the D-FActScores of people biographies generated by retrieval-augmented LLMs.We show that D-FActScore can better assess the factuality of paragraphs with entity ambiguity than FActScore.We also find that four widely used open-source LLMs tend to mix information of distinct entities to form non-factual paragraphs, making their D-FActScore much lower than FActScore by over 10%.

pdf bib
Do Metadata and Appearance of the Retrieved Webpages Affect LLM’s Reasoning in Retrieval-Augmented Generation?
Cheng-Han Chiang | Hung-yi Lee
Proceedings of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP

Large language models (LLMs) answering questions with retrieval-augmented generation (RAG) can face conflicting evidence in the retrieved documents. While prior works study how textual features like perplexity and readability influence the persuasiveness of evidence, humans consider more than textual content when evaluating conflicting information on the web. In this paper, we focus on the following question: When two webpages contain conflicting information to answer a question, does non-textual information affect the LLM’s reasoning and answer? We consider three types of non-textual information: (1) the webpage’s publication time, (2) the source where the webpage is from, and (3) the appearance of the webpage. We give the LLM a Yes/No question and two conflicting webpages that support yes and no, respectively. We exchange the non-textual information in the two webpages to see if the LLMs tend to use the information from a newer, more reliable, and more visually appealing webpage. We find that changing the publication time of the webpage can change the answer for most LLMs, but changing the webpage’s source merely affects the LLM’s answer. We also reveal that the webpage’s appearance has a strong causal effect on Claude-3’s answers.The codes and datasets used in the paper are available at https://github.com/d223302/rag-metadata.

pdf bib
Over-Reasoning and Redundant Calculation of Large Language Models
Cheng-Han Chiang | Hung-yi Lee
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)

Large language models (LLMs) can solve problems step-by-step.While this chain-of-thought (CoT) reasoning boosts LLMs’ performance, it is unclear if LLMs know when to use CoT and whether those CoT are always necessary to answer the question. This paper shows that LLMs tend to generate redundant calculations and reasoning on a manually constructed math QA dataset, GSM8K-Zero.GSM8K-Zero is constructed such that the questions can be answered without any calculations, but LLMs, including Llama-2 models and Claude-2, tend to generate lengthy and unnecessary calculations to answer the questions.We also conduct experiments to explain why LLMs generate redundant calculations and reasonings.

pdf bib
Advancing Large Language Models to Capture Varied Speaking Styles and Respond Properly in Spoken Conversations
Guan-Ting Lin | Cheng-Han Chiang | Hung-yi Lee
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In spoken dialogue, even if two current turns are the same sentence, their responses might still differ when they are spoken in different styles. The spoken styles, containing paralinguistic and prosodic information, mark the most significant difference between text and speech modality. When using text-only LLMs to model spoken dialogue, text-only LLMs cannot give different responses based on the speaking style of the current turn. In this paper, we focus on enabling LLMs to listen to the speaking styles and respond properly. Our goal is to teach the LLM that “even if the sentences are identical if they are spoken in different styles, their corresponding responses might be different”. Since there is no suitable dataset for achieving this goal, we collect a speech-to-speech dataset, StyleTalk, with the following desired characteristics: when two current speeches have the same content but are spoken in different styles, their responses will be different. To teach LLMs to understand and respond properly to the speaking styles, we propose the Spoken-LLM framework that can model the linguistic content and the speaking styles. We train Spoken-LLM using the StyleTalk dataset and devise a two-stage training pipeline to help the Spoken-LLM better learn the speaking styles. Based on extensive experiments, we show that Spoken-LLM outperforms text-only baselines and prior speech LLMs methods.

2023

pdf bib
Can Large Language Models Be an Alternative to Human Evaluations?
Cheng-Han Chiang | Hung-yi Lee
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Human evaluation is indispensable and inevitable for assessing the quality of texts generated by machine learning models or written by humans. However, human evaluation is very difficult to reproduce and its quality is notoriously unstable, hindering fair comparisons among different natural language processing (NLP) models and algorithms. Recently, large language models (LLMs) have demonstrated exceptional performance on unseen tasks when only the task instructions are provided. In this paper, we explore if such an ability of the LLMs can be used as an alternative to human evaluation. We present the LLMs with the exact same instructions, samples to be evaluated, and questions used to conduct human evaluation, and then ask the LLMs to generate responses to those questions; we dub this LLM evaluation. We use human evaluation and LLM evaluation to evaluate the texts in two NLP tasks: open-ended story generation and adversarial attacks. We show that the result of LLM evaluation is consistent with the results obtained by expert human evaluation: the texts rated higher by human experts are also rated higher by the LLMs.We also find that the results of LLM evaluation are stable over different formatting of the task instructions and the sampling algorithm used to generate the answer. We are the first to show the potential of using LLMs to assess the quality of texts and discuss the limitations and ethical considerations of LLM evaluation.

pdf bib
Are Synonym Substitution Attacks Really Synonym Substitution Attacks?
Cheng-Han Chiang | Hung-yi Lee
Findings of the Association for Computational Linguistics: ACL 2023

In this paper, we explore the following question: Are synonym substitution attacks really synonym substitution attacks (SSAs)?We approach this question by examining how SSAs replace words in the original sentence and show that there are still unresolved obstacles that make current SSAs generate invalid adversarial samples. We reveal that four widely used word substitution methods generate a large fraction of invalid substitution words that are ungrammatical or do not preserve the original sentence’s semantics. Next, we show that the semantic and grammatical constraints used in SSAs for detecting invalid word replacements are highly insufficient in detecting invalid adversarial samples.

pdf bib
A Closer Look into Using Large Language Models for Automatic Evaluation
Cheng-Han Chiang | Hung-yi Lee
Findings of the Association for Computational Linguistics: EMNLP 2023

Using large language models (LLMs) to evaluate text quality has recently gained popularity. Some existing prior works explore the idea of using LLMs for evaluation, while they differ in some details of the evaluation process. In this paper, we analyze *LLM evaluation* and *G-Eval*, and we discuss how those details in the evaluation process change how well the ratings given by LLMs correlate with human ratings. We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings. We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal. Last, we reveal that asking the LLM to explain its own ratings consistently improves the correlation between the ChatGPT and human ratings and pushes state-of-the-art (SoTA) correlations on two meta-evaluation datasets.

pdf bib
Revealing the Blind Spot of Sentence Encoder Evaluation by HEROS
Cheng-Han Chiang | Hung-yi Lee | Yung-Sung Chuang | James Glass
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

2022

pdf bib
Recent Advances in Pre-trained Language Models: Why Do They Work and How Do They Work
Cheng-Han Chiang | Yung-Sung Chuang | Hung-yi Lee
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Tutorial Abstracts

Pre-trained language models (PLMs) are language models that are pre-trained on large-scaled corpora in a self-supervised fashion. These PLMs have fundamentally changed the natural language processing community in the past few years. In this tutorial, we aim to provide a broad and comprehensive introduction from two perspectives: why those PLMs work, and how to use them in NLP tasks. The first part of the tutorial shows some insightful analysis on PLMs that partially explain their exceptional downstream performance. The second part first focuses on emerging pre-training methods that enable PLMs to perform diverse downstream tasks and then illustrates how one can apply those PLMs to downstream tasks under different circumstances. These circumstances include fine-tuning PLMs when under data scarcity, and using PLMs with parameter efficiency. We believe that attendees of different backgrounds would find this tutorial informative and useful.

2020

pdf bib
Pretrained Language Model Embryology: The Birth of ALBERT
Cheng-Han Chiang | Sung-Feng Huang | Hung-yi Lee
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

While behaviors of pretrained language models (LMs) have been thoroughly examined, what happened during pretraining is rarely studied. We thus investigate the developmental process from a set of randomly initialized parameters to a totipotent language model, which we refer to as the embryology of a pretrained language model. Our results show that ALBERT learns to reconstruct and predict tokens of different parts of speech (POS) in different learning speeds during pretraining. We also find that linguistic knowledge and world knowledge do not generally improve as pretraining proceeds, nor do downstream tasks’ performance. These findings suggest that knowledge of a pretrained model varies during pretraining, and having more pretrain steps does not necessarily provide a model with more comprehensive knowledge. We provide source codes and pretrained models to reproduce our results at https://github.com/d223302/albert-embryology.