2022
pdf
bib
abs
Masked Language Models Know Which are Popular: A Simple Ranking Strategy for Commonsense Question Answering
Xuan Luo
|
Chuang Fan
|
Yice Zhang
|
Wanguo Jiang
|
Bing Qin
|
Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2022
We propose a simple ranking strategy to solve a generative commonsense question answering (QA) problem. Compared with multiple-choice QA, it is challenging because the answers to a question are not unique and they are supposed to be popular and diverse. Our strategy exploits the dataset itself and negative samples that we collect from WordNet to train a ranker that picks out the most popular answers for commonsense questions. The effectiveness of our strategy is verified on different pre-trained masked language models (MLMs) in a pipeline framework, where an MLM reranks the generated answers. Further, we explore an end-to-end framework where MLMs are utilized to guide the generation of generative language models (GLMs). Taking advantage of reinforcement learning, we apply policy gradient to train a GLM with the rewards fed back by an MLM. Empirical results on ProtoQA dataset demonstrate that MLMs can acquire the ability to distinguish the popular answers and improve the typical answer generation of GLMs as well.
2021
pdf
bib
abs
A Neural Transition-based Model for Argumentation Mining
Jianzhu Bao
|
Chuang Fan
|
Jipeng Wu
|
Yixue Dang
|
Jiachen Du
|
Ruifeng Xu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
The goal of argumentation mining is to automatically extract argumentation structures from argumentative texts. Most existing methods determine argumentative relations by exhaustively enumerating all possible pairs of argument components, which suffer from low efficiency and class imbalance. Moreover, due to the complex nature of argumentation, there is, so far, no universal method that can address both tree and non-tree structured argumentation. Towards these issues, we propose a neural transition-based model for argumentation mining, which incrementally builds an argumentation graph by generating a sequence of actions, avoiding inefficient enumeration operations. Furthermore, our model can handle both tree and non-tree structured argumentation without introducing any structural constraints. Experimental results show that our model achieves the best performance on two public datasets of different structures.
pdf
bib
abs
An Empirical Study on Multiple Information Sources for Zero-Shot Fine-Grained Entity Typing
Yi Chen
|
Haiyun Jiang
|
Lemao Liu
|
Shuming Shi
|
Chuang Fan
|
Min Yang
|
Ruifeng Xu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Auxiliary information from multiple sources has been demonstrated to be effective in zero-shot fine-grained entity typing (ZFET). However, there lacks a comprehensive understanding about how to make better use of the existing information sources and how they affect the performance of ZFET. In this paper, we empirically study three kinds of auxiliary information: context consistency, type hierarchy and background knowledge (e.g., prototypes and descriptions) of types, and propose a multi-source fusion model (MSF) targeting these sources. The performance obtains up to 11.42% and 22.84% absolute gains over state-of-the-art baselines on BBN and Wiki respectively with regard to macro F1 scores. More importantly, we further discuss the characteristics, merits and demerits of each information source and provide an intuitive understanding of the complementarity among them.
2020
pdf
bib
abs
Transition-based Directed Graph Construction for Emotion-Cause Pair Extraction
Chuang Fan
|
Chaofa Yuan
|
Jiachen Du
|
Lin Gui
|
Min Yang
|
Ruifeng Xu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
Emotion-cause pair extraction aims to extract all potential pairs of emotions and corresponding causes from unannotated emotion text. Most existing methods are pipelined framework, which identifies emotions and extracts causes separately, leading to a drawback of error propagation. Towards this issue, we propose a transition-based model to transform the task into a procedure of parsing-like directed graph construction. The proposed model incrementally generates the directed graph with labeled edges based on a sequence of actions, from which we can recognize emotions with the corresponding causes simultaneously, thereby optimizing separate subtasks jointly and maximizing mutual benefits of tasks interdependently. Experimental results show that our approach achieves the best performance, outperforming the state-of-the-art methods by 6.71% (p<0.01) in F1 measure.
pdf
bib
abs
Emotion-Cause Pair Extraction as Sequence Labeling Based on A Novel Tagging Scheme
Chaofa Yuan
|
Chuang Fan
|
Jianzhu Bao
|
Ruifeng Xu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
The task of emotion-cause pair extraction deals with finding all emotions and the corresponding causes in unannotated emotion texts. Most recent studies are based on the likelihood of Cartesian product among all clause candidates, resulting in a high computational cost. Targeting this issue, we regard the task as a sequence labeling problem and propose a novel tagging scheme with coding the distance between linked components into the tags, so that emotions and the corresponding causes can be extracted simultaneously. Accordingly, an end-to-end model is presented to process the input texts from left to right, always with linear time complexity, leading to a speed up. Experimental results show that our proposed model achieves the best performance, outperforming the state-of-the-art method by 2.26% (p<0.001) in F1 measure.
2019
pdf
bib
abs
A Knowledge Regularized Hierarchical Approach for Emotion Cause Analysis
Chuang Fan
|
Hongyu Yan
|
Jiachen Du
|
Lin Gui
|
Lidong Bing
|
Min Yang
|
Ruifeng Xu
|
Ruibin Mao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
Emotion cause analysis, which aims to identify the reasons behind emotions, is a key topic in sentiment analysis. A variety of neural network models have been proposed recently, however, these previous models mostly focus on the learning architecture with local textual information, ignoring the discourse and prior knowledge, which play crucial roles in human text comprehension. In this paper, we propose a new method to extract emotion cause with a hierarchical neural model and knowledge-based regularizations, which aims to incorporate discourse context information and restrain the parameters by sentiment lexicon and common knowledge. The experimental results demonstrate that our proposed method achieves the state-of-the-art performance on two public datasets in different languages (Chinese and English), outperforming a number of competitive baselines by at least 2.08% in F-measure.