Constanza Fierro


2024

pdf bib
Defining Knowledge: Bridging Epistemology and Large Language Models
Constanza Fierro | Ruchira Dhar | Filippos Stamatiou | Nicolas Garneau | Anders Søgaard
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Knowledge claims are abundant in the literature on large language models (LLMs); but can we say that GPT-4 truly “knows” the Earth is round? To address this question, we review standard definitions of knowledge in epistemology and we formalize interpretations applicable to LLMs. In doing so, we identify inconsistencies and gaps in how current NLP research conceptualizes knowledge with respect to epistemological frameworks. Additionally, we conduct a survey of 100 professional philosophers and computer scientists to compare their preferences in knowledge definitions and their views on whether LLMs can really be said to know. Finally, we suggest evaluation protocols for testing knowledge in accordance to the most relevant definitions.

pdf bib
Do Vision and Language Models Share Concepts? A Vector Space Alignment Study
Jiaang Li | Yova Kementchedjhieva | Constanza Fierro | Anders Søgaard
Transactions of the Association for Computational Linguistics, Volume 12

Large-scale pretrained language models (LMs) are said to “lack the ability to connect utterances to the world” (Bender and Koller, 2020), because they do not have “mental models of the world” (Mitchell and Krakauer, 2023). If so, one would expect LM representations to be unrelated to representations induced by vision models. We present an empirical evaluation across four families of LMs (BERT, GPT-2, OPT, and LLaMA-2) and three vision model architectures (ResNet, SegFormer, and MAE). Our experiments show that LMs partially converge towards representations isomorphic to those of vision models, subject to dispersion, polysemy, and frequency. This has important implications for both multi-modal processing and the LM understanding debate (Mitchell and Krakauer, 2023).1

pdf bib
MuLan: A Study of Fact Mutability in Language Models
Constanza Fierro | Nicolas Garneau | Emanuele Bugliarello | Yova Kementchedjhieva | Anders Søgaard
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)

Facts are subject to contingencies and can be true or false in different circumstances. One such contingency is time, wherein some facts mutate over a given period, e.g., the president of a country or the winner of a championship. Trustworthy language models ideally identify mutable facts as such and process them accordingly. We create MuLan, a benchmark for evaluating the ability of English language models to anticipate time-contingency, covering both 1:1 and 1:N relations. We hypothesize that mutable facts are encoded differently than immutable ones, hence being easier to update. In a detailed evaluation of six popular large language models, we consistently find differences in the LLMs’ confidence, representations, and update behavior, depending on the mutability of a fact. Our findings should inform future work on the injection of and induction of time-contingent knowledge to/from LLMs.

pdf bib
𝜇PLAN: Summarizing using a Content Plan as Cross-Lingual Bridge
Fantine Huot | Joshua Maynez | Chris Alberti | Reinald Kim Amplayo | Priyanka Agrawal | Constanza Fierro | Shashi Narayan | Mirella Lapata
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Cross-lingual summarization aims to generate a summary in one languagegiven input in a different language, allowing for the dissemination ofrelevant content among different language speaking populations. Thetask is challenging mainly due to the paucity of cross-lingualdatasets and the compounded difficulty of summarizing andtranslating.This work presents 𝜇PLAN, an approach to cross-lingual summarization that uses an intermediate planning step as a cross-lingual bridge. We formulate the plan as a sequence of entities capturing thesummary’s content and the order in which it should becommunicated. Importantly, our plans abstract from surface form: usinga multilingual knowledge base, we align entities to their canonicaldesignation across languages and generate the summary conditioned onthis cross-lingual bridge and the input. Automatic and human evaluation on the XWikis dataset (across four language pairs) demonstrates that our planning objective achieves state-of-the-art performance interms of informativeness and faithfulness. Moreover, 𝜇PLAN modelsimprove the zero-shot transfer to new cross-lingual language pairscompared to baselines without a planning component.

pdf bib
Learning to Plan and Generate Text with Citations
Constanza Fierro | Reinald Kim Amplayo | Fantine Huot | Nicola De Cao | Joshua Maynez | Shashi Narayan | Mirella Lapata
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The increasing demand for the deployment of LLMs in information-seeking scenarios has spurred efforts in creating verifiable systems, which generate responses to queries along with supporting evidence. In this paper, we explore the attribution capabilities of plan-based models which have been recently shown to improve the faithfulness, grounding, and controllability of generated text. We conceptualize plans as a sequence of questions which serve as blueprints of the generated content and its organization. We propose two attribution models that utilize different variants of blueprints, an abstractive model where questions are generated from scratch, and an extractive model where questions are copied from the input. Experiments on long-form question-answering show that planning consistently improves attribution quality. Moreover, the citations generated by blueprint models are more accurate compared to those obtained from LLM-based pipelines lacking a planning component.

2022

pdf bib
Challenges and Strategies in Cross-Cultural NLP
Daniel Hershcovich | Stella Frank | Heather Lent | Miryam de Lhoneux | Mostafa Abdou | Stephanie Brandl | Emanuele Bugliarello | Laura Cabello Piqueras | Ilias Chalkidis | Ruixiang Cui | Constanza Fierro | Katerina Margatina | Phillip Rust | Anders Søgaard
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Various efforts in the Natural Language Processing (NLP) community have been made to accommodate linguistic diversity and serve speakers of many different languages. However, it is important to acknowledge that speakers and the content they produce and require, vary not just by language, but also by culture. Although language and culture are tightly linked, there are important differences. Analogous to cross-lingual and multilingual NLP, cross-cultural and multicultural NLP considers these differences in order to better serve users of NLP systems. We propose a principled framework to frame these efforts, and survey existing and potential strategies.

pdf bib
Factual Consistency of Multilingual Pretrained Language Models
Constanza Fierro | Anders Søgaard
Findings of the Association for Computational Linguistics: ACL 2022

Pretrained language models can be queried for factual knowledge, with potential applications in knowledge base acquisition and tasks that require inference. However, for that, we need to know how reliable this knowledge is, and recent work has shown that monolingual English language models lack consistency when predicting factual knowledge, that is, they fill-in-the-blank differently for paraphrases describing the same fact. In this paper, we extend the analysis of consistency to a multilingual setting. We introduce a resource, mParaRel, and investigate (i) whether multilingual language models such as mBERT and XLM-R are more consistent than their monolingual counterparts;and (ii) if such models are equally consistent across languages. We find that mBERT is as inconsistent as English BERT in English paraphrases, but that both mBERT and XLM-R exhibit a high degree of inconsistency in English and even more so for all the other 45 languages.

2017

pdf bib
200K+ Crowdsourced Political Arguments for a New Chilean Constitution
Constanza Fierro | Claudio Fuentes | Jorge Pérez | Mauricio Quezada
Proceedings of the 4th Workshop on Argument Mining

In this paper we present the dataset of 200,000+ political arguments produced in the local phase of the 2016 Chilean constitutional process. We describe the human processing of this data by the government officials, and the manual tagging of arguments performed by members of our research group. Afterwards we focus on classification tasks that mimic the human processes, comparing linear methods with neural network architectures. The experiments show that some of the manual tasks are suitable for automatization. In particular, the best methods achieve a 90% top-5 accuracy in a multi-class classification of arguments, and 65% macro-averaged F1-score for tagging arguments according to a three-part argumentation model.