Gang Zhao


2024

pdf bib
Visual Enhanced Entity-Level Interaction Network for Multimodal Summarization
Haolong Yan | Binghao Tang | Boda Lin | Gang Zhao | Si Li
Findings of the Association for Computational Linguistics: NAACL 2024

MultiModal Summarization (MMS) aims to generate a concise summary based on multimodal data like texts and images and has wide application in multimodal fields.Previous works mainly focus on the coarse-level textual and visual features in which the overall features of the image interact with the whole sentence.However, the entities of the input text and the objects of the image may be underutilized, limiting the performance of current MMS models.In this paper, we propose a novel Visual Enhanced Entity-Level Interaction Network (VE-ELIN) to address the problem of underutilization of multimodal inputs at a fine-grained level in two ways.We first design a cross-modal entity interaction module to better fuse the entity information in text and the object information in vision.Then, we design an object-guided visual enhancement module to fully extract the visual features and enhance the focus of the image on the object area.We evaluate VE-ELIN on two MMS datasets and propose new metrics to measure the factual consistency of entities in the output.Finally, experimental results demonstrate that VE-ELIN is effective and outperforms previous methods under both traditional metrics and ours.The source code is available at https://github.com/summoneryhl/VE-ELIN.

2023

pdf bib
Joint Geometrical and Statistical Domain Adaptation for Cross-domain Code Vulnerability Detection
Qianjin Du | Shiji Zhou | Xiaohui Kuang | Gang Zhao | Jidong Zhai
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In code vulnerability detection tasks, a detector trained on a label-rich source domain fails to provide accurate prediction on new or unseen target domains due to the lack of labeled training data on target domains. Previous studies mainly utilize domain adaptation to perform cross-domain vulnerability detection. But they ignore the negative effect of private semantic characteristics of the target domain for domain alignment, which easily causes the problem of negative transfer. In addition, these methods forcibly reduce the distribution discrepancy between domains and do not take into account the interference of irrelevant target instances for distributional domain alignment, which leads to the problem of excessive alignment. To address the above issues, we propose a novel cross-domain code vulnerability detection framework named MNCRI. Specifically, we introduce mutual nearest neighbor contrastive learning to align the source domain and target domain geometrically, which could align the common semantic characteristics of two domains and separate out the private semantic characteristics of each domain. Furthermore, we introduce an instance re-weighting scheme to alleviate the problem of excessive alignment. This scheme dynamically assign different weights to instances, reducing the contribution of irrelevant instances so as to achieve better domain alignment. Finally, extensive experiments demonstrate that MNCRI significantly outperforms state-of-the-art cross-domain code vulnerability detection methods by a large margin.

pdf bib
DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Extraction
Gang Zhao | Xiaocheng Gong | Xinjie Yang | Guanting Dong | Shudong Lu | Si Li
Findings of the Association for Computational Linguistics: EMNLP 2023

Most current Event Extraction (EE) methods focus on the high-resource scenario, which requires a large amount of annotated data and can hardly be applied to low-resource domains. To address EE more effectively with limited resources, we propose the Demonstration-enhanced Schema-guided Generation (DemoSG) model, which benefits low-resource EE from two aspects: Firstly, we propose the demonstration-based learning paradigm for EE to fully use the annotated data, which transforms them into demonstrations to illustrate the extraction process and help the model learn effectively. Secondly, we formulate EE as a natural language generation task guided by schema-based prompts, thereby leveraging label semantics and promoting knowledge transfer in low-resource scenarios. We conduct extensive experiments under in-domain and domain adaptation low-resource settings on three datasets, and study the robustness of DemoSG. The results show that DemoSG significantly outperforms current methods in low-resource scenarios.

pdf bib
DemoNSF: A Multi-task Demonstration-based Generative Framework for Noisy Slot Filling Task
Guanting Dong | Tingfeng Hui | Zhuoma GongQue | Jinxu Zhao | Daichi Guo | Gang Zhao | Keqing He | Weiran Xu
Findings of the Association for Computational Linguistics: EMNLP 2023

Recently, prompt-based generative frameworks have shown impressive capabilities in sequence labeling tasks. However, in practical dialogue scenarios, relying solely on simplistic templates and traditional corpora presents a challenge for these methods in generalizing to unknown input perturbations. To address this gap, we propose a multi-task demonstration-based generative framework for noisy slot filling, named DemoNSF. Specifically, we introduce three noisy auxiliary tasks, namely noisy recovery (NR), random mask (RM), and hybrid discrimination (HD), to implicitly capture semantic structural information of input perturbations at different granularities. In the downstream main task, we design a noisy demonstration construction strategy for the generative framework, which explicitly incorporates task-specific information and perturbed distribution during training and inference. Experiments on two benchmarks demonstrate that DemoNSF outperforms all baseline methods and achieves strong generalization. Further analysis provides empirical guidance for the practical application of generative frameworks. Our code is released at https://github.com/dongguanting/Demo-NSF.

2022

pdf bib
Code Vulnerability Detection via Nearest Neighbor Mechanism
Qianjin Du | Xiaohui Kuang | Gang Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

Code vulnerability detection is a fundamental and challenging task in the software security field. Existing research works aim to learn semantic information from the source code by utilizing NLP technologies. However, in vulnerability detection tasks, some vulnerable samples are very similar to non-vulnerable samples, which are difficult to identify. To address this issue and improve detection performance, we introduce the k-nearest neighbor mechanism which retrieves multiple neighbor samples and utilizes label information of retrieved neighbor samples to provide help for model predictions. Besides, we use supervised contrastive learning to make the model learn the discriminative representation and ensure that label information of retrieved neighbor samples is as consistent as possible with the label information of testing samples. Extensive experiments show that our method can achieve obvious performance improvements compared to baseline models.

pdf bib
Entity-level Interaction via Heterogeneous Graph for Multimodal Named Entity Recognition
Gang Zhao | Guanting Dong | Yidong Shi | Haolong Yan | Weiran Xu | Si Li
Findings of the Association for Computational Linguistics: EMNLP 2022

Multimodal Named Entity Recognition (MNER) faces two specific challenges: 1) How to capture useful entity-related visual information. 2) How to alleviate the interference of visual noise. Previous works have gained progress by improving interacting mechanisms or seeking for better visual features. However, existing methods neglect the integrity of entity semantics and conduct cross-modal interaction at token-level, which cuts apart the semantics of entities and makes non-entity tokens easily interfered with by irrelevant visual noise. Thus in this paper, we propose an end-to-end heterogeneous Graph-based Entity-level Interacting model (GEI) for MNER. GEI first utilizes a span detection subtask to obtain entity representations, which serve as the bridge between two modalities. Then, the heterogeneous graph interacting network interacts entity with object nodes to capture entity-related visual information, and fuses it into only entity-associated tokens to rid non-entity tokens of the visual noise. Experiments on two widely used datasets demonstrate the effectiveness of our method. Our code will be available at https://github.com/GangZhao98/GEI.

1999

pdf bib
Transfer in experience-guided machine translation
Gang Zhao | Junichi Tsujii
Proceedings of Machine Translation Summit VII

Experience-Guided Machine Translation (EGMT) seeks to represent the translators' knowledge of translation as experiences and translates by analogy. The transfer in EGMT finds the experiences most similar to a new text and its parts, segments it into units of translation and translates them by analogy to the experiences and then assembles them into a whole. A research prototype of analogical transfer from Chinese to English is built to prove the viability of the approach in the exploration of new architecture of machine translation. The paper discusses how the experiences are represented and selected with respect to a new text. It describes how units of translation are defined, partial translation is derived and composed into a whole.