Guang Liu


2024

pdf bib
Generate-on-Graph: Treat LLM as both Agent and KG for Incomplete Knowledge Graph Question Answering
Yao Xu | Shizhu He | Jiabei Chen | Zihao Wang | Yangqiu Song | Hanghang Tong | Guang Liu | Jun Zhao | Kang Liu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

To address the issues of insufficient knowledge and hallucination in Large Language Models (LLMs), numerous studies have explored integrating LLMs with Knowledge Graphs (KGs). However, these methods are typically evaluated on conventional Knowledge Graph Question Answering (KGQA) with complete KGs, where all factual triples required for each question are entirely covered by the given KG. In such cases, LLMs primarily act as an agent to find answer entities within the KG, rather than effectively integrating the internal knowledge of LLMs and external knowledge sources such as KGs. In fact, KGs are often incomplete to cover all the knowledge required to answer questions. To simulate these real-world scenarios and evaluate the ability of LLMs to integrate internal and external knowledge, we propose leveraging LLMs for QA under Incomplete Knowledge Graph (IKGQA), where the provided KG lacks some of the factual triples for each question, and construct corresponding datasets. To handle IKGQA, we propose a training-free method called Generate-on-Graph (GoG), which can generate new factual triples while exploring KGs. Specifically, GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA. Experimental results on two datasets demonstrate that our GoG outperforms all previous methods.

2023

pdf bib
AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities
Zhongzhi Chen | Guang Liu | Bo-Wen Zhang | Qinghong Yang | Ledell Wu
Findings of the Association for Computational Linguistics: ACL 2023

CLIP (Contrastive Language–Image Pretraining) is an English multimodal representation model learned from a massive amount of English text-image pairs and has achieved great success in various downstream tasks, including image classification, text-to-image retrieval, and image generation. When extending CLIP to other languages, the major problem is the lack of good-quality text-image pairs. In this work, we present AltCLIP, a simple and low-resource method to build a strong multilingual multimodal representation model. Instead of training a model from scratch on multilingual text-image pairs, we take the original CLIP model trained on English text-image pairs and alter its text encoder with a pre-trained multilingual text encoder (XLM-R). We then align text and image representations by a two-stage training schema consisting of teacher learning and contrastive learning. Our method utilizes the existence of rich parallel text data and pre-trained multilingual language models. We present extensive experimental evaluations to demonstrate the effectiveness of our proposed method. Our model sets new state-of-the-art zero-shot performances on a wide range of tasks in multilingual multimodal benchmarks, including ImageNet-CN/IT/JA/KO serials, Flicker30k-CN, COCO-CN, Multi30k, and XTD. Further, our model outperforms the original CLIP model on zero-shot cross-modal retrieval, Image Classification in the Wild (ICinW) tasks, and CLIP Benchmark. We plan to open-source our code, pre-trained model weights, and evaluation toolkits of multilingual multimodal tasks, to facilitate research on multilingual multimodal representation learning.

2021

pdf bib
Adversarial Mixing Policy for Relaxing Locally Linear Constraints in Mixup
Guang Liu | Yuzhao Mao | Huang Hailong | Gao Weiguo | Li Xuan
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Mixup is a recent regularizer for current deep classification networks. Through training a neural network on convex combinations of pairs of examples and their labels, it imposes locally linear constraints on the model’s input space. However, such strict linear constraints often lead to under-fitting which degrades the effects of regularization. Noticeably, this issue is getting more serious when the resource is extremely limited. To address these issues, we propose the Adversarial Mixing Policy (AMP), organized in a “min-max-rand” formulation, to relax the Locally Linear Constraints in Mixup. Specifically, AMP adds a small adversarial perturbation to the mixing coefficients rather than the examples. Thus, slight non-linearity is injected in-between the synthetic examples and synthetic labels. By training on these data, the deep networks are further regularized, and thus achieve a lower predictive error rate. Experiments on five text classification benchmarks and five backbone models have empirically shown that our methods reduce the error rate over Mixup variants in a significant margin (up to 31.3%), especially in low-resource conditions (up to 17.5%).

pdf bib
DialogueTRM: Exploring Multi-Modal Emotional Dynamics in a Conversation
Yuzhao Mao | Guang Liu | Xiaojie Wang | Weiguo Gao | Xuan Li
Findings of the Association for Computational Linguistics: EMNLP 2021

Emotion dynamics formulates principles explaining the emotional fluctuation during conversations. Recent studies explore the emotion dynamics from the self and inter-personal dependencies, however, ignoring the temporal and spatial dependencies in the situation of multi-modal conversations. To address the issue, we extend the concept of emotion dynamics to multi-modal settings and propose a Dialogue Transformer for simultaneously modeling the intra-modal and inter-modal emotion dynamics. Specifically, the intra-modal emotion dynamics is to not only capture the temporal dependency but also satisfy the context preference in every single modality. The inter-modal emotional dynamics aims at handling multi-grained spatial dependency across all modalities. Our models outperform the state-of-the-art with a margin of 4%-16% for most of the metrics on three benchmark datasets.

2012

pdf bib
Attribute based Chinese Named Entity Recognition and Disambiguation
Wei Han | Guang Liu | Yuzhao Mao | Zhenni Huang
Proceedings of the Second CIPS-SIGHAN Joint Conference on Chinese Language Processing