Hanjiang Lai


2024

pdf bib
Hierarchical Topic Modeling via Contrastive Learning and Hyperbolic Embedding
Zhicheng Lin | HeGang Chen | Yuyin Lu | Yanghui Rao | Hao Xu | Hanjiang Lai
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Hierarchical topic modeling, which can mine implicit semantics in the corpus and automatically construct topic hierarchical relationships, has received considerable attention recently. However, the current hierarchical topic models are mainly based on Euclidean space, which cannot well retain the implicit hierarchical semantic information in the corpus, leading to irrational structure of the generated topics. On the other hand, the existing Generative Adversarial Network (GAN) based neural topic models perform satisfactorily, but they remain constrained by pattern collapse due to the discontinuity of latent space. To solve the above problems, with the hypothesis of hyperbolic space, we propose a novel GAN-based hierarchical topic model to mine high-quality topics by introducing contrastive learning to capture information from documents. Furthermore, the distinct tree-like property of hyperbolic space preserves the implicit hierarchical semantics of documents in topic embeddings, which are projected into the hyperbolic space. Finally, we use a multi-head self-attention mechanism to learn implicit hierarchical semantics of topics and mine topic structure information. Experiments on real-world corpora demonstrate the remarkable performance of our model on topic coherence and topic diversity, as well as the rationality of the topic hierarchy.

2023

pdf bib
Counterfactual Multihop QA: A Cause-Effect Approach for Reducing Disconnected Reasoning
Wangzhen Guo | Qinkang Gong | Yanghui Rao | Hanjiang Lai
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multi-hop QA requires reasoning over multiple supporting facts to answer the question. However, the existing QA models always rely on shortcuts, e.g., providing the true answer by only one fact, rather than multi-hop reasoning, which is referred as disconnected reasoning problem. To alleviate this issue, we propose a novel counterfactual multihop QA, a causal-effect approach that enables to reduce the disconnected reasoning. It builds upon explicitly modeling of causality: 1) the direct causal effects of disconnected reasoning and 2) the causal effect of true multi-hop reasoning from the total causal effect. With the causal graph, a counterfactual inference is proposed to disentangle the disconnected reasoning from the total causal effect, which provides us a new perspective and technology to learn a QA model that exploits the true multi-hop reasoning instead of shortcuts. Extensive experiments have been conducted on the benchmark HotpotQA dataset, which demonstrate that the proposed method can achieve notable improvement on reducing disconnected reasoning. For example, our method achieves 5.8% higher points of its Supps score on HotpotQA through true multihop reasoning. The code is available at https://github.com/guowzh/CFMQA.

pdf bib
From Parse-Execute to Parse-Execute-Refine: Improving Semantic Parser for Complex Question Answering over Knowledge Base
Wangzhen Guo | Linyin Luo | Hanjiang Lai | Jian Yin
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Parsing questions into executable logical forms has showed impressive results for knowledge-base question answering (KBQA). However, complex KBQA is a more challenging task that requires to perform complex multi-step reasoning. Recently, a new semantic parser called KoPL has been proposed to explicitly model the reasoning processes, which achieved the state-of-the-art on complex KBQA. In this paper, we further explore how to unlock the reasoning ability of semantic parsers by a simple proposed parse-execute-refine paradigm. We refine and improve the KoPL parser by demonstrating the executed intermediate reasoning steps to the KBQA model. We show that such simple strategy can significantly improve the ability of complex reasoning. Specifically, we propose three components: a parsing stage, an execution stage and a refinement stage, to enhance the ability of complex reasoning. The parser uses the KoPL to generate the transparent logical forms. Then, the execution stage aligns and executes the logical forms over knowledge base to obtain intermediate reasoning processes. Finally, the intermediate step-by-step reasoning processes are demonstrated to the KBQA model in the refinement stage. With the explicit reasoning processes, it is much easier to answer the complex questions. Experiments on benchmark dataset shows that the proposed PER-KBQA performs significantly better than the stage-of-the-art baselines on the complex KBQA.