Enhancing user engagement through personalization in conversational agents has gained significance, especially with the advent of large language models that generate fluent responses. Personalized dialogue generation, however, is multifaceted and varies in its definition – ranging from instilling a persona in the agent to capturing users’ explicit and implicit cues. This paper seeks to systemically survey the recent landscape of personalized dialogue generation, including the datasets employed, methodologies developed, and evaluation metrics applied. Covering 22 datasets, we highlight benchmark datasets and newer ones enriched with additional features. We further analyze 17 seminal works from top conferences between 2021-2023 and identify five distinct types of problems. We also shed light on recent progress by LLMs in personalized dialogue generation. Our evaluation section offers a comprehensive summary of assessment facets and metrics utilized in these works. In conclusion, we discuss prevailing challenges and envision prospect directions for future research in personalized dialogue generation.
Lifelogging has gained more attention due to its wide applications, such as personalized recommendations or memory assistance. The issues of collecting and extracting personal life events have emerged. People often share their life experiences with others through conversations. However, extracting life events from conversations is rarely explored. In this paper, we present Life Event Dialog, a dataset containing fine-grained life event annotations on conversational data. In addition, we initiate a novel Conversational Life Event Extraction task and differentiate the task from the public event extraction or the life event extraction from other sources like microblogs. We explore three information extraction (IE) frameworks to address the Conversational Life Event Extraction task: OpenIE, relation extraction, and event extraction. A comprehensive empirical analysis of the three baselines is established. The results suggest that the current event extraction model still struggles with extracting life events from human daily conversations. Our proposed Life Event Dialog dataset and in-depth analysis of IE frameworks will facilitate future research on life event extraction from conversations.
This paper explores the task of Temporal Video Grounding (TVG) where, given an untrimmed video and a query sentence, the goal is to recognize and determine temporal boundaries of action instances in the video described by natural language queries. Recent works tackled this task by improving query inputs with large pre-trained language models (PLM), at the cost of more expensive training. However, the effects of this integration are unclear, as these works also propose improvements in the visual inputs. Therefore, this paper studies the role of query sentence representation with PLMs in TVG and assesses the applicability of parameter-efficient training with NLP adapters. We couple popular PLMs with a selection of existing approaches and test different adapters to reduce the impact of the additional parameters. Our results on three challenging datasets show that, with the same visual inputs, TVG models greatly benefited from the PLM integration and fine-tuning, stressing the importance of the text query representation in this task. Furthermore, adapters were an effective alternative to full fine-tuning, even though they are not tailored to our task, allowing PLM integration in larger TVG models and delivering results comparable to SOTA models. Finally, our results shed light on which adapters work best in different scenarios.
This paper explores how humans conduct conversations with images by investigating an open-domain image conversation dataset, ImageChat. We examined the conversations with images from the perspectives of image relevancy and image information. We found that utterances/conversations are not always related to the given image, and conversation topics diverge within three turns about half of the time. Besides image objects, more comprehensive non-object image information is also indispensable. After inspecting the causes, we suggested that understanding the overall scenario of image and connecting objects based on their high-level attributes might be very helpful to generate more engaging open-domain conversations when an image is presented. We proposed enriching the image information with image caption and object tags based on our analysis. With our proposed image+ features, we improved automatic metrics including BLEU and Bert Score, and increased the diversity and image-relevancy of generated responses to the strong baseline. The result verifies that our analysis provides valuable insights and could facilitate future research on open-domain conversations with images.
Machine learning in hyperbolic spaces has attracted much attention in natural language processing and many other fields. In particular, Hyperbolic Neural Networks (HNNs) have improved a wide variety of tasks, from machine translation to knowledge graph embedding. Although some studies have reported the effectiveness of embedding into the product of multiple hyperbolic spaces, HNNs have mainly been constructed in a single hyperbolic space, and their extension to product spaces has not been sufficiently studied. Therefore, we propose a novel method to extend a given HNN in a single space to a product of hyperbolic spaces. We apply our method to Hyperbolic Graph Convolutional Networks (HGCNs), extending several HNNs. Our model improved the graph node classification accuracy especially on datasets with tree-like structures. The results suggest that neural networks in a product of hyperbolic spaces can be more effective than in a single space in representing structural data.
A release note is a technical document that describes the latest changes to a software product and is crucial in open source software development. However, it still remains challenging to generate release notes automatically. In this paper, we present a new dataset called RNSum, which contains approximately 82,000 English release notes and the associated commit messages derived from the online repositories in GitHub. Then, we propose classwise extractive-then-abstractive/abstractive summarization approaches to this task, which can employ a modern transformer-based seq2seq network like BART and can be applied to various repositories without specific constraints. The experimental results on the RNSum dataset show that the proposed methods can generate less noisy release notes at higher coverage than the baselines. We also observe that there is a significant gap in the coverage of essential information when compared to human references. Our dataset and the code are publicly available.
Existing automatic story evaluation methods place a premium on story lexical level coherence, deviating from human preference.We go beyond this limitation by considering a novel Story Evaluation method that mimics human preference when judging a story, namely StoryER, which consists of three sub-tasks: Ranking, Rating and Reasoning.Given either a machine-generated or a human-written story, StoryER requires the machine to output 1) a preference score that corresponds to human preference, 2) specific ratings and their corresponding confidences and 3) comments for various aspects (e.g., opening, character-shaping).To support these tasks, we introduce a well-annotated dataset comprising (i) 100k ranked story pairs; and (ii) a set of 46k ratings and comments on various aspects of the story.We finetune Longformer-Encoder-Decoder (LED) on the collected dataset, with the encoder responsible for preference score and aspect prediction and the decoder for comment generation.Our comprehensive experiments result a competitive benchmark for each task, showing the high correlation to human preference.In addition, we have witnessed the joint learning of the preference scores, the aspect ratings, and the comments brings gain each single task.Our dataset and benchmarks are publicly available to advance the research of story evaluation tasks.
Story visualization advances the traditional text-to-image generation by enabling multiple image generation based on a complete story. This task requires machines to 1) understand long text inputs, and 2) produce a globally consistent image sequence that illustrates the contents of the story. A key challenge of consistent story visualization is to preserve characters that are essential in stories. To tackle the challenge, we propose to adapt a recent work that augments VQ-VAE with a text-to-visual-token (transformer) architecture. Specifically, we modify the text-to-visual-token module with a two-stage framework: 1) character token planning model that predicts the visual tokens for characters only; 2) visual token completion model that generates the remaining visual token sequence, which is sent to VQ-VAE for finalizing image generations. To encourage characters to appear in the images, we further train the two-stage framework with a character-token alignment objective. Extensive experiments and evaluations demonstrate that the proposed method excels at preserving characters and can produce higher quality image sequences compared with the strong baselines.
Mathematical reasoning task is a subset of the natural language question answering task. Existing work suggested solving this task with a two-phase approach, where the model first predicts formulas from questions and then calculates answers from such formulas. This approach achieved desirable performance in existing work. However, its reliance on annotated formulas as intermediate labels throughout its training limited its application. In this work, we put forward the idea to enable models to learn optimal formulas autonomously. We proposed Weakly Supervised Formula Learner, a learning framework that drives the formula exploration with weak supervision from the final answers to mathematical problems. Our experiments are conducted on two representative mathematical reasoning datasets MathQA and Math23K. On MathQA, our method outperformed baselines trained on complete yet imperfect formula annotations. On Math23K, our method outperformed other weakly supervised learning methods.
This paper presents the results of the shared tasks from the 8th workshop on Asian translation (WAT2021). For the WAT2021, 28 teams participated in the shared tasks and 24 teams submitted their translation results for the human evaluation. We also accepted 5 research papers. About 2,100 translation results were submitted to the automatic evaluation server, and selected submissions were manually evaluated.
Story generation is a task that aims to automatically generate a meaningful story. This task is challenging because it requires high-level understanding of the semantic meaning of sentences and causality of story events. Naivesequence-to-sequence models generally fail to acquire such knowledge, as it is difficult to guarantee logical correctness in a text generation model without strategic planning. In this study, we focus on planning a sequence of events assisted by event graphs and use the events to guide the generator. Rather than using a sequence-to-sequence model to output a sequence, as in some existing works, we propose to generate an event sequence by walking on an event graph. The event graphs are built automatically based on the corpus. To evaluate the proposed approach, we incorporate human participation, both in event planning and story generation. Based on the largescale human annotation results, our proposed approach has been shown to provide more logically correct event sequences and stories compared with previous approaches.
Generating texts in scientific papers requires not only capturing the content contained within the given input but also frequently acquiring the external information called context. We push forward the scientific text generation by proposing a new task, namely context-aware text generation in the scientific domain, aiming at exploiting the contributions of context in generated texts. To this end, we present a novel challenging large-scale Scientific Paper Dataset for ConteXt-Aware Text Generation (SciXGen), consisting of well-annotated 205,304 papers with full references to widely-used objects (e.g., tables, figures, algorithms) in a paper. We comprehensively benchmark, using state-of-the-arts, the efficacy of our newly constructed SciXGen dataset in generating description and paragraph. Our dataset and benchmarks will be made publicly available to hopefully facilitate the scientific text generation research.
This paper proposed a supervised visual attention mechanism for multimodal neural machine translation (MNMT), trained with constraints based on manual alignments between words in a sentence and their corresponding regions of an image. The proposed visual attention mechanism captures the relationship between a word and an image region more precisely than a conventional visual attention mechanism trained through MNMT in an unsupervised manner. Our experiments on English-German and German-English translation tasks using the Multi30k dataset and on English-Japanese and Japanese-English translation tasks using the Flickr30k Entities JP dataset show that a Transformer-based MNMT model can be improved by incorporating our proposed supervised visual attention mechanism and that further improvements can be achieved by combining it with a supervised cross-lingual attention mechanism (up to +1.61 BLEU, +1.7 METEOR).
Visually-grounded natural language processing has become an important research direction in the past few years. However, majorities of the available cross-modal resources (e.g., image-caption datasets) are built in English and cannot be directly utilized in multilingual or non-English scenarios. In this study, we present a novel multilingual multimodal corpus by extending the Flickr30k Entities image-caption dataset with Japanese translations, which we name Flickr30k Entities JP (F30kEnt-JP). To the best of our knowledge, this is the first multilingual image-caption dataset where the captions in the two languages are parallel and have the shared annotations of many-to-many phrase-to-region linking. We believe that phrase-to-region as well as phrase-to-phrase supervision can play a vital role in fine-grained grounding of language and vision, and will promote many tasks such as multilingual image captioning and multimodal machine translation. To verify our dataset, we performed phrase localization experiments in both languages and investigated the effectiveness of our Japanese annotations as well as multilingual learning realized by our dataset.
Model ensemble techniques often increase task performance in neural networks; however, they require increased time, memory, and management effort. In this study, we propose a novel method that replicates the effects of a model ensemble with a single model. Our approach creates K-virtual models within a single parameter space using K-distinct pseudo-tags and K-distinct vectors. Experiments on text classification and sequence labeling tasks on several datasets demonstrate that our method emulates or outperforms a traditional model ensemble with 1/K-times fewer parameters.
This paper presents the results of the shared tasks from the 7th workshop on Asian translation (WAT2020). For the WAT2020, 20 teams participated in the shared tasks and 14 teams submitted their translation results for the human evaluation. We also received 12 research paper submissions out of which 7 were accepted. About 500 translation results were submitted to the automatic evaluation server, and selected submissions were manually evaluated.
In this paper, we introduce an unsupervised discourse constituency parsing algorithm. We use Viterbi EM with a margin-based criterion to train a span-based discourse parser in an unsupervised manner. We also propose initialization methods for Viterbi training of discourse constituents based on our prior knowledge of text structures. Experimental results demonstrate that our unsupervised parser achieves comparable or even superior performance to fully supervised parsers. We also investigate discourse constituents that are learned by our method.
In real-world dialogue, first-person visual information about where the other speakers are and what they are paying attention to is crucial to understand their intentions. Non-verbal responses also play an important role in social interactions. In this paper, we propose a visually-grounded first-person dialogue (VFD) dataset with verbal and non-verbal responses. The VFD dataset provides manually annotated (1) first-person images of agents, (2) utterances of human speakers, (3) eye-gaze locations of the speakers, and (4) the agents’ verbal and non-verbal responses. We present experimental results obtained using the proposed VFD dataset and recent neural network models (e.g., BERT, ResNet). The results demonstrate that first-person vision helps neural network models correctly understand human intentions, and the production of non-verbal responses is a challenging task like that of verbal responses. Our dataset is publicly available.
Users of machine translation systems may desire to obtain multiple candidates translated in different ways. In this work, we attempt to obtain diverse translations by using sentence codes to condition the sentence generation. We describe two methods to extract the codes, either with or without the help of syntax information. For diverse generation, we sample multiple candidates, each of which conditioned on a unique code. Experiments show that the sampled translations have much higher diversity scores when using reasonable sentence codes, where the translation quality is still on par with the baselines even under strong constraint imposed by the codes. In qualitative analysis, we show that our method is able to generate paraphrase translations with drastically different structures. The proposed approach can be easily adopted to existing translation systems as no modification to the model is required.
Input method editor (IME) converts sequential alphabet key inputs to words in a target language. It is an indispensable service for billions of Asian users. Although the neural-based language model is extensively studied and shows promising results in sequence-to-sequence tasks, applying a neural-based language model to IME was not considered feasible due to high latency when converting words on user devices. In this work, we articulate the bottleneck of neural IME decoding to be the heavy softmax computation over a large vocabulary. We propose an approach that incrementally builds a subset vocabulary from the word lattice. Our approach always computes the probability with a selected subset vocabulary. When the selected vocabulary is updated, the stale probabilities in previous steps are fixed by recomputing the missing logits. The experiments on Japanese IME benchmark shows an over 50x speedup for the softmax computations comparing to the baseline, reaching real-time speed even on commodity CPU without losing conversion accuracy. The approach is potentially applicable to other incremental sequence-to-sequence decoding tasks such as real-time continuous speech recognition.
To achieve high translation performance, neural machine translation models usually rely on the beam search algorithm for decoding sentences. The beam search finds good candidate translations by considering multiple hypotheses of translations simultaneously. However, as the algorithm produces hypotheses in a monotonic left-to-right order, a hypothesis can not be revisited once it is discarded. We found such monotonicity forces the algorithm to sacrifice some good decoding paths. To mitigate this problem, we relax the monotonic constraint of the beam search by maintaining all found hypotheses in a single priority queue and using a universal score function for hypothesis selection. The proposed algorithm allows discarded hypotheses to be recovered in a later step. Despite its simplicity, we show that the proposed decoding algorithm enhances the quality of selected hypotheses and improve the translations even for high-performance models in English-Japanese translation task.
The research described in this paper examines how to learn linguistic knowledge associated with discourse relations from unlabeled corpora. We introduce an unsupervised learning method on text coherence that could produce numerical representations that improve implicit discourse relation recognition in a semi-supervised manner. We also empirically examine two variants of coherence modeling: order-oriented and topic-oriented negative sampling, showing that, of the two, topic-oriented negative sampling tends to be more effective.
The research question we explore in this study is how to obtain syntactically plausible word representations without using human annotations. Our underlying hypothesis is that word ordering tests, or linearizations, is suitable for learning syntactic knowledge about words. To verify this hypothesis, we develop a differentiable model called Word Ordering Network (WON) that explicitly learns to recover correct word order while implicitly acquiring word embeddings representing syntactic knowledge. We evaluate the word embeddings produced by the proposed method on downstream syntax-related tasks such as part-of-speech tagging and dependency parsing. The experimental results demonstrate that the WON consistently outperforms both order-insensitive and order-sensitive baselines on these tasks.
Recently, the attention mechanism plays a key role to achieve high performance for Neural Machine Translation models. However, as it computes a score function for the encoder states in all positions at each decoding step, the attention model greatly increases the computational complexity. In this paper, we investigate the adequate vision span of attention models in the context of machine translation, by proposing a novel attention framework that is capable of reducing redundant score computation dynamically. The term “vision span”’ means a window of the encoder states considered by the attention model in one step. In our experiments, we found that the average window size of vision span can be reduced by over 50% with modest loss in accuracy on English-Japanese and German-English translation tasks.
Automatic video description generation has recently been getting attention after rapid advancement in image caption generation. Automatically generating description for a video is more challenging than for an image due to its temporal dynamics of frames. Most of the work relied on Recurrent Neural Network (RNN) and recently attentional mechanisms have also been applied to make the model learn to focus on some frames of the video while generating each word in a describing sentence. In this paper, we focus on a sequence-to-sequence approach with temporal attention mechanism. We analyze and compare the results from different attention model configuration. By applying the temporal attention mechanism to the system, we can achieve a METEOR score of 0.310 on Microsoft Video Description dataset, which outperformed the state-of-the-art system so far.