Hong Wang


2023

pdf bib
Limitations of Language Models in Arithmetic and Symbolic Induction
Jing Qian | Hong Wang | Zekun Li | Shiyang Li | Xifeng Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent work has shown that large pretrained Language Models (LMs) can not only perform remarkably well on a range of Natural Language Processing (NLP) tasks but also start improving on reasoning tasks such as arithmetic induction, symbolic manipulation, and commonsense reasoning with increasing size of models. However, it is still unclear what the underlying capabilities of these LMs are. Surprisingly, we find that these models have limitations on certain basic symbolic manipulation tasks such as copy, reverse, and addition. When the total number of symbols or repeating symbols increases, the model performance drops quickly. We investigate the potential causes behind this phenomenon and examine a set of possible methods, including explicit positional markers, fine-grained computation steps, and LMs with callable programs. Experimental results show that none of these techniques can solve the simplest addition induction problem completely. In the end, we introduce LMs with tutor, which demonstrates every single step of teaching. LMs with tutor is able to deliver 100% accuracy in situations of OOD and repeating symbols, shedding new insights on the boundary of large LMs in induction.

2022

pdf bib
Controllable Dialogue Simulation with In-context Learning
Zekun Li | Wenhu Chen | Shiyang Li | Hong Wang | Jing Qian | Xifeng Yan
Findings of the Association for Computational Linguistics: EMNLP 2022

Building dialogue systems requires a large corpus of annotated dialogues. Such datasets are usually created via crowdsourcing, which is expensive and time-consuming. In this paper, we propose Dialogic, a novel dialogue simulation method based on large language model in-context learning to automate dataset creation. Seeded with a few annotated dialogues, Dialogic automatically selects in-context examples for demonstration and prompts GPT-3 to generate new dialogues and annotations in a controllable way. Our method can rapidly expand a small set of dialogue data with minimum or zero human involvement and parameter update and is thus much more cost-efficient and time-saving than crowdsourcing. Experimental results on the MultiWOZ dataset demonstrate that training a model on the simulated dialogues leads to even better performance than using the same amount of human-generated dialogues under the challenging low-resource settings, with as few as 85 dialogues as a seed. When the full training set is given, our method can still serve as an effective data augmentation method to further improve performance. Human evaluation results also show that our simulated dialogues have near-human fluency and annotation accuracy. The code and data are available at https://github.com/Leezekun/dialogic.

2021

pdf bib
Progressively Pretrained Dense Corpus Index for Open-Domain Question Answering
Wenhan Xiong | Hong Wang | William Yang Wang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Commonly used information retrieval methods such as TF-IDF in open-domain question answering (QA) systems are insufficient to capture deep semantic matching that goes beyond lexical overlaps. Some recent studies consider the retrieval process as maximum inner product search (MIPS) using dense question and paragraph representations, achieving promising results on several information-seeking QA datasets. However, the pretraining of the dense vector representations is highly resource-demanding, e.g., requires a very large batch size and lots of training steps. In this work, we propose a sample-efficient method to pretrain the paragraph encoder. First, instead of using heuristically created pseudo question-paragraph pairs for pretraining, we use an existing pretrained sequence-to-sequence model to build a strong question generator that creates high-quality pretraining data. Second, we propose a simple progressive pretraining algorithm to ensure the existence of effective negative samples in each batch. Across three open-domain QA datasets, our method consistently outperforms a strong dense retrieval baseline that uses 6 times more computation for training. On two of the datasets, our method achieves more than 4-point absolute improvement in terms of answer exact match.

pdf bib
Lifelong Learning of Hate Speech Classification on Social Media
Jing Qian | Hong Wang | Mai ElSherief | Xifeng Yan
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Existing work on automated hate speech classification assumes that the dataset is fixed and the classes are pre-defined. However, the amount of data in social media increases every day, and the hot topics changes rapidly, requiring the classifiers to be able to continuously adapt to new data without forgetting the previously learned knowledge. This ability, referred to as lifelong learning, is crucial for the real-word application of hate speech classifiers in social media. In this work, we propose lifelong learning of hate speech classification on social media. To alleviate catastrophic forgetting, we propose to use Variational Representation Learning (VRL) along with a memory module based on LB-SOINN (Load-Balancing Self-Organizing Incremental Neural Network). Experimentally, we show that combining variational representation learning and the LB-SOINN memory module achieves better performance than the commonly-used lifelong learning techniques.

2020

pdf bib
HybridQA: A Dataset of Multi-Hop Question Answering over Tabular and Textual Data
Wenhu Chen | Hanwen Zha | Zhiyu Chen | Wenhan Xiong | Hong Wang | William Yang Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Existing question answering datasets focus on dealing with homogeneous information, based either only on text or KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms, using homogeneous information alone might lead to severe coverage problems. To fill in the gap, we present HybridQA, a new large-scale question-answering dataset that requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table and multiple free-form corpora linked with the entities in the table. The questions are designed to aggregate both tabular information and text information, i.e., lack of either form would render the question unanswerable. We test with three different models: 1) a table-only model. 2) text-only model. 3) a hybrid model that combines heterogeneous information to find the answer. The experimental results show that the EM scores obtained by two baselines are below 20%, while the hybrid model can achieve an EM over 40%. This gap suggests the necessity to aggregate heterogeneous information in HybridQA. However, the hybrid model’s score is still far behind human performance. Hence, HybridQA can serve as a challenging benchmark to study question answering with heterogeneous information.

2019

pdf bib
Simple yet Effective Bridge Reasoning for Open-Domain Multi-Hop Question Answering
Wenhan Xiong | Mo Yu | Xiaoxiao Guo | Hong Wang | Shiyu Chang | Murray Campbell | William Yang Wang
Proceedings of the 2nd Workshop on Machine Reading for Question Answering

A key challenge of multi-hop question answering (QA) in the open-domain setting is to accurately retrieve the supporting passages from a large corpus. Existing work on open-domain QA typically relies on off-the-shelf information retrieval (IR) techniques to retrieve answer passages, i.e., the passages containing the groundtruth answers. However, IR-based approaches are insufficient for multi-hop questions, as the topic of the second or further hops is not explicitly covered by the question. To resolve this issue, we introduce a new subproblem of open-domain multi-hop QA, which aims to recognize the bridge (i.e., the anchor that links to the answer passage) from the context of a set of start passages with a reading comprehension model. This model, the bridge reasoner, is trained with a weakly supervised signal and produces the candidate answer passages for the passage reader to extract the answer. On the full-wiki HotpotQA benchmark, we significantly improve the baseline method by 14 point F1. Without using any memory inefficient contextual embeddings, our result is also competitive with the state-of-the-art that applies BERT in multiple modules.

pdf bib
Sentence Embedding Alignment for Lifelong Relation Extraction
Hong Wang | Wenhan Xiong | Mo Yu | Xiaoxiao Guo | Shiyu Chang | William Yang Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Conventional approaches to relation extraction usually require a fixed set of pre-defined relations. Such requirement is hard to meet in many real applications, especially when new data and relations are emerging incessantly and it is computationally expensive to store all data and re-train the whole model every time new data and relations come in. We formulate such challenging problem as lifelong relation extraction and investigate memory-efficient incremental learning methods without catastrophically forgetting knowledge learned from previous tasks. We first investigate a modified version of the stochastic gradient methods with a replay memory, which surprisingly outperforms recent state-of-the-art lifelong learning methods. We further propose to improve this approach to alleviate the forgetting problem by anchoring the sentence embedding space. Specifically, we utilize an explicit alignment model to mitigate the sentence embedding distortion of learned model when training on new data and new relations. Experiment results on multiple benchmarks show that our proposed method significantly outperforms the state-of-the-art lifelong learning approaches.

pdf bib
Self-Supervised Learning for Contextualized Extractive Summarization
Hong Wang | Xin Wang | Wenhan Xiong | Mo Yu | Xiaoxiao Guo | Shiyu Chang | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Existing models for extractive summarization are usually trained from scratch with a cross-entropy loss, which does not explicitly capture the global context at the document level. In this paper, we aim to improve this task by introducing three auxiliary pre-training tasks that learn to capture the document-level context in a self-supervised fashion. Experiments on the widely-used CNN/DM dataset validate the effectiveness of the proposed auxiliary tasks. Furthermore, we show that after pre-training, a clean model with simple building blocks is able to outperform previous state-of-the-art that are carefully designed.

pdf bib
TWEETQA: A Social Media Focused Question Answering Dataset
Wenhan Xiong | Jiawei Wu | Hong Wang | Vivek Kulkarni | Mo Yu | Shiyu Chang | Xiaoxiao Guo | William Yang Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

With social media becoming increasingly popular on which lots of news and real-time events are reported, developing automated question answering systems is critical to the effective-ness of many applications that rely on real-time knowledge. While previous datasets have concentrated on question answering (QA) for formal text like news and Wikipedia, we present the first large-scale dataset for QA over social media data. To ensure that the tweets we collected are useful, we only gather tweets used by journalists to write news articles. We then ask human annotators to write questions and answers upon these tweets. Unlike otherQA datasets like SQuAD in which the answers are extractive, we allow the answers to be abstractive. We show that two recently proposed neural models that perform well on formal texts are limited in their performance when applied to our dataset. In addition, even the fine-tuned BERT model is still lagging behind human performance with a large margin. Our results thus point to the need of improved QA systems targeting social media text.

2012

pdf bib
Polarity Consistency Checking for Sentiment Dictionaries
Eduard Dragut | Hong Wang | Clement Yu | Prasad Sistla | Weiyi Meng
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)