Houquan Zhou


2024

pdf bib
A Simple yet Effective Training-free Prompt-free Approach to Chinese Spelling Correction Based on Large Language Models
Houquan Zhou | Zhenghua Li | Bo Zhang | Chen Li | Shaopeng Lai | Ji Zhang | Fei Huang | Min Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

This work proposes a simple training-free prompt-free approach to leverage large language models (LLMs) for the Chinese spelling correction (CSC) task, which is totally different from all previous CSC approaches. The key idea is to use an LLM as a pure language model in a conventional manner. The LLM goes through the input sentence from the beginning, and at each inference step, produces a distribution over its vocabulary for deciding the next token, given a partial sentence. To ensure that the output sentence remains faithful to the input sentence, we design a minimal distortion model that utilizes pronunciation or shape similarities between the original and replaced characters. Furthermore, we propose two useful reward strategies to address practical challenges specific to the CSC task. Experiments on five public datasets demonstrate that our approach significantly improves LLM performance, enabling them to compete with state-of-the-art domain-general CSC models.

2023

pdf bib
Improving Seq2Seq Grammatical Error Correction via Decoding Interventions
Houquan Zhou | Yumeng Liu | Zhenghua Li | Min Zhang | Bo Zhang | Chen Li | Ji Zhang | Fei Huang
Findings of the Association for Computational Linguistics: EMNLP 2023

The sequence-to-sequence (Seq2Seq) approach has recently been widely used in grammatical error correction (GEC) and shows promising performance. However, the Seq2Seq GEC approach still suffers from two issues. First, a Seq2Seq GEC model can only be trained on parallel data, which, in GEC task, is often noisy and limited in quantity. Second, the decoder of a Seq2Seq GEC model lacks an explicit awareness of the correctness of the token being generated. In this paper, we propose a unified decoding intervention framework that employs an external critic to assess the appropriateness of the token to be generated incrementally, and then dynamically influence the choice of the next token. We discover and investigate two types of critics: a pre-trained left-to-right language model critic and an incremental target-side grammatical error detector critic. Through extensive experiments on English and Chinese datasets, our framework consistently outperforms strong baselines and achieves results competitive with state-of-the-art methods.

pdf bib
CCL23-Eval任务7赛道一系统报告:Suda &Alibaba 文本纠错系统(CCL23-Eval Task 7 Track 1 System Report: Suda &Alibaba Team Text Error Correction System)
Haochen Jiang (蒋浩辰) | Yumeng Liu (刘雨萌) | Houquan Zhou (周厚全) | Ziheng Qiao (乔子恒) | Bo Zhang (波章,) | Chen Li (李辰) | Zhenghua Li (李正华) | Min Zhang (张民)
Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“本报告描述 Suda &Alibaba 纠错团队在 CCL2023 汉语学习者文本纠错评测任务的赛道一:多维度汉语学习者文本纠错(Multidimensional Chinese Learner Text Correc-tion)中提交的参赛系统。在模型方面,本队伍使用了序列到序列和序列到编辑两种纠错模型。在数据方面,本队伍分别使用基于混淆集构造的伪数据、Lang-8 真实数据以及 YACLC 开发集进行三阶段训练;在开放任务上还额外使用HSK、CGED等数据进行训练。本队伍还使用了一系列有效的性能提升技术,包括了基于规则的数据增强,数据清洗,后处理以及模型集成等 .除此之外,本队伍还在如何使用GPT3.5、GPT4等大模型来辅助中文文本纠错上进行了一些探索,提出了一种可以有效避免大模型过纠问题的方法,并尝试了多种 Prompt。在封闭和开放两个任务上,本队伍在最小改动、流利提升和平均 F0.5 得分上均位列第一。”

2022

pdf bib
Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging
Houquan Zhou | Yang Li | Zhenghua Li | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2022

In recent years, large-scale pre-trained language models (PLMs) have made extraordinary progress in most NLP tasks. But, in the unsupervised POS tagging task, works utilizing PLMs are few and fail to achieve state-of-the-art (SOTA) performance. The recent SOTA performance is yielded by a Guassian HMM variant proposed by He et al. (2018). However, as a generative model, HMM makes very strong independence assumptions, making it very challenging to incorporate contexualized word representations from PLMs. In this work, we for the first time propose a neural conditional random field autoencoder (CRF-AE) model for unsupervised POS tagging. The discriminative encoder of CRF-AE can straightforwardly incorporate ELMo word representations. Moreover, inspired by feature-rich HMM, we reintroduce hand-crafted features into the decoder of CRF-AE. Finally, experiments clearly show that our model outperforms previous state-of-the-art models by a large margin on Penn Treebank and multilingual Universal Dependencies treebank v2.0.

2021

pdf bib
An In-depth Study on Internal Structure of Chinese Words
Chen Gong | Saihao Huang | Houquan Zhou | Zhenghua Li | Min Zhang | Zhefeng Wang | Baoxing Huai | Nicholas Jing Yuan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Unlike English letters, Chinese characters have rich and specific meanings. Usually, the meaning of a word can be derived from its constituent characters in some way. Several previous works on syntactic parsing propose to annotate shallow word-internal structures for better utilizing character-level information. This work proposes to model the deep internal structures of Chinese words as dependency trees with 11 labels for distinguishing syntactic relationships. First, based on newly compiled annotation guidelines, we manually annotate a word-internal structure treebank (WIST) consisting of over 30K multi-char words from Chinese Penn Treebank. To guarantee quality, each word is independently annotated by two annotators and inconsistencies are handled by a third senior annotator. Second, we present detailed and interesting analysis on WIST to reveal insights on Chinese word formation. Third, we propose word-internal structure parsing as a new task, and conduct benchmark experiments using a competitive dependency parser. Finally, we present two simple ways to encode word-internal structures, leading to promising gains on the sentence-level syntactic parsing task.

pdf bib
A Coarse-to-Fine Labeling Framework for Joint Word Segmentation, POS Tagging, and Constituent Parsing
Yang Hou | Houquan Zhou | Zhenghua Li | Yu Zhang | Min Zhang | Zhefeng Wang | Baoxing Huai | Nicholas Jing Yuan
Proceedings of the 25th Conference on Computational Natural Language Learning

The most straightforward approach to joint word segmentation (WS), part-of-speech (POS) tagging, and constituent parsing is converting a word-level tree into a char-level tree, which, however, leads to two severe challenges. First, a larger label set (e.g., ≥ 600) and longer inputs both increase computational costs. Second, it is difficult to rule out illegal trees containing conflicting production rules, which is important for reliable model evaluation. If a POS tag (like VV) is above a phrase tag (like VP) in the output tree, it becomes quite complex to decide word boundaries. To deal with both challenges, this work proposes a two-stage coarse-to-fine labeling framework for joint WS-POS-PAR. In the coarse labeling stage, the joint model outputs a bracketed tree, in which each node corresponds to one of four labels (i.e., phrase, subphrase, word, subword). The tree is guaranteed to be legal via constrained CKY decoding. In the fine labeling stage, the model expands each coarse label into a final label (such as VP, VP*, VV, VV*). Experiments on Chinese Penn Treebank 5.1 and 7.0 show that our joint model consistently outperforms the pipeline approach on both settings of w/o and w/ BERT, and achieves new state-of-the-art performance.