Jana Diesner


2024

pdf bib
SciPrompt: Knowledge-augmented Prompting for Fine-grained Categorization of Scientific Topics
Zhiwen You | Kanyao Han | Haotian Zhu | Bertram Ludaescher | Jana Diesner
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Prompt-based fine-tuning has become an essential method for eliciting information encoded in pre-trained language models for a variety of tasks, including text classification. For multi-class classification tasks, prompt-based fine-tuning under low-resource scenarios has resulted in performance levels comparable to those of fully fine-tuning methods. Previous studies have used crafted prompt templates and verbalizers, mapping from the label terms space to the class space, to solve the classification problem as a masked language modeling task. However, cross-domain and fine-grained prompt-based fine-tuning with an automatically enriched verbalizer remains unexplored, mainly due to the difficulty and costs of manually selecting domain label terms for the verbalizer, which requires humans with domain expertise. To address this challenge, we introduce SciPrompt, a framework designed to automatically retrieve scientific topic-related terms for low-resource text classification tasks. To this end, we select semantically correlated and domain-specific label terms within the context of scientific literature for verbalizer augmentation. Furthermore, we propose a new verbalization strategy that uses correlation scores as additional weights to enhance the prediction performance of the language model during model tuning. Our method outperforms state-of-the-art, prompt-based fine-tuning methods on scientific text classification tasks under few and zero-shot settings, especially in classifying fine-grained and emerging scientific topics.

pdf bib
Beyond Binary Gender Labels: Revealing Gender Bias in LLMs through Gender-Neutral Name Predictions
Zhiwen You | HaeJin Lee | Shubhanshu Mishra | Sullam Jeoung | Apratim Mishra | Jinseok Kim | Jana Diesner
Proceedings of the 5th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

Name-based gender prediction has traditionally categorized individuals as either female or male based on their names, using a binary classification system. That binary approach can be problematic in the cases of gender-neutral names that do not align with any one gender, among other reasons. Relying solely on binary gender categories without recognizing gender-neutral names can reduce the inclusiveness of gender prediction tasks. We introduce an additional gender category, i.e., “neutral”, to study and address potential gender biases in Large Language Models (LLMs). We evaluate the performance of several foundational and large language models in predicting gender based on first names only. Additionally, we investigate the impact of adding birth years to enhance the accuracy of gender prediction, accounting for shifting associations between names and genders over time. Our findings indicate that most LLMs identify male and female names with high accuracy (over 80%) but struggle with gender-neutral names (under 40%), and the accuracy of gender prediction is higher for English-based first names than non-English names. The experimental results show that incorporating the birth year does not improve the overall accuracy of gender prediction, especially for names with evolving gender associations. We recommend using caution when applying LLMs for gender identification in downstream tasks, particularly when dealing with non-binary gender labels.

pdf bib
Extractive Summarization via Fine-grained Semantic Tuple Extraction
Yubin Ge | Sullam Jeoung | Jana Diesner
Proceedings of the 17th International Natural Language Generation Conference

Traditional extractive summarization treats the task as sentence-level classification and requires a fixed number of sentences for extraction. However, this rigid constraint on the number of sentences to extract may hinder model generalization due to varied summary lengths across datasets. In this work, we leverage the interrelation between information extraction (IE) and text summarization, and introduce a fine-grained autoregressive method for extractive summarization through semantic tuple extraction. Specifically, we represent each sentence as a set of semantic tuples, where tuples are predicate-argument structures derived from conducting IE. Then we adopt a Transformer-based autoregressive model to extract the tuples corresponding to the target summary given a source document. In inference, a greedy approach is proposed to select source sentences to cover extracted tuples, eliminating the need for a fixed number. Our experiments on CNN/DM and NYT demonstrate the method’s superiority over strong baselines. Through the zero-shot setting for testing the generalization of models to diverse summary lengths across datasets, we further show our method outperforms baselines, including ChatGPT.

pdf bib
Detecting Impact Relevant Sections in Scientific Research
Maria Becker | Kanyao Han | Haejin Lee | Antonina Werthmann | Rezvaneh Rezapour | Jana Diesner | Andreas Witt
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Impact assessment is an evolving area of research that aims at measuring and predicting the potential effects of projects or programs. Measuring the impact of scientific research is a vibrant subdomain, closely intertwined with impact assessment. A recurring obstacle pertains to the absence of an efficient framework which can facilitate the analysis of lengthy reports and text labeling. To address this issue, we propose a framework for automatically assessing the impact of scientific research projects by identifying pertinent sections in project reports that indicate the potential impacts. We leverage a mixed-method approach, combining manual annotations with supervised machine learning, to extract these passages from project reports. We experiment with different machine learning algorithms, including traditional statistical models as well as pre-trained transformer language models. Our experiments show that our proposed method achieves accuracy scores up to 0.81, and that our method is generalizable to scientific research from different domains and different languages.

pdf bib
Two-Stage Graph-Augmented Summarization of Scientific Documents
Rezvaneh Rezapour | Yubin Ge | Kanyao Han | Ray Jeong | Jana Diesner
Proceedings of the 1st Workshop on NLP for Science (NLP4Science)

Automatic text summarization helps to digest the vast and ever-growing amount of scientific publications. While transformer-based solutions like BERT and SciBERT have advanced scientific summarization, lengthy documents pose a challenge due to the token limits of these models. To address this issue, we introduce and evaluate a two-stage model that combines an extract-then-compress framework. Our model incorporates a “graph-augmented extraction module” to select order-based salient sentences and an “abstractive compression module” to generate concise summaries. Additionally, we introduce the *BioConSumm* dataset, which focuses on biodiversity conservation, to support underrepresented domains and explore domain-specific summarization strategies. Out of the tested models, our model achieves the highest ROUGE-2 and ROUGE-L scores on our newly created dataset (*BioConSumm*) and on the *SUMPUBMED* dataset, which serves as a benchmark in the field of biomedicine.

2023

pdf bib
StereoMap: Quantifying the Awareness of Human-like Stereotypes in Large Language Models
Sullam Jeoung | Yubin Ge | Jana Diesner
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have been observed to encode and perpetuate harmful associations present in the training data. We propose a theoretically grounded framework called StereoMap to gain insights into their perceptions of how demographic groups have been viewed by society. The framework is grounded in the Stereotype Content Model (SCM); a well-established theory from psychology. According to SCM, stereotypes are not all alike. Instead, the dimensions of Warmth and Competence serve as the factors that delineate the nature of stereotypes. Based on the SCM theory, StereoMap maps LLMs’ perceptions of social groups (defined by socio-demographic features) using the dimensions of Warmth and Competence. Furthermore, the framework enables the investigation of keywords and verbalizations of reasoning of LLMs’ judgments to uncover underlying factors influencing their perceptions. Our results show that LLMs exhibit a diverse range of perceptions towards these groups, characterized by mixed evaluations along the dimensions of Warmth and Competence. Furthermore, analyzing the reasonings of LLMs, our findings indicate that LLMs demonstrate an awareness of social disparities, often stating statistical data and research findings to support their reasoning. This study contributes to the understanding of how LLMs perceive and represent social groups, shedding light on their potential biases and the perpetuation of harmful associations.

pdf bib
Detection and Mitigation of the Negative Impact of Dataset Extractivity on Abstractive Summarization
Yubin Ge | Sullam Jeoung | Ly Dinh | Jana Diesner
Findings of the Association for Computational Linguistics: ACL 2023

In text summarization, extractivity is defined as a measurement of the degree of overlap between a source document and its summary. Previous research has shown that the extractivity level of training data can influence both output extractivity and the amount of factual information (i.e. faithfulness) in outputs for abstractive summarization. However, it remains unclear if and how extractivity impacts the performance of abstractive models. In this work, we investigate the relationship between dataset extractivity and model performance by comparing the performance of trained models under different degrees of extractivity. We find that while low levels of extractivity can improve performance, as extractivity increases, performance is negatively impacted. Furthermore, through an analysis of the model’s copy continuity of content, we discover that higher extractivity leads to a greater tendency for the model to copy text continuously from the source document rather than identifying and summarizing important content that should be covered in the target summary. To address these issues, we propose a simple and effective method to design copy labels for fixing the model’s copying behaviors and train the model with a copy mechanism. The experimental results illustrate the effectiveness of our strategy in alleviating the negative impact on model performance resulting from high dataset extractivity, and that our method outperforms several competitive baselines.

pdf bib
PyTAIL: An Open Source Tool for Interactive and Incremental Learning of NLP Models with Human in the Loop for Online Data
Shubhanshu Mishra | Jana Diesner
Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023)

Online data streams make training machine learning models hard because of distribution shift and new patterns emerging over time. For natural language processing (NLP) tasks that utilize a collection of features based on lexicons and rules, it is important to adapt these features to the changing data. To address this challenge we introduce PyTAIL, a python library, which allows a human in the loop approach to actively train NLP models. PyTAIL enhances generic active learning, which only suggests new instances to label by also suggesting new features like rules and lexicons to label. Furthermore, PyTAIL is flexible enough for users to accept, reject, or update rules and lexicons as the model is being trained. Finally, we simulate the performance of PyTAIL on existing social media benchmark datasets for text classification. We compare various active learning strategies on these benchmarks. The model closes the gap with as few as 10% of the training data. Finally, we also highlight the importance of tracking evaluation metric on remaining data (which is not yet merged with active learning) alongside the test dataset. This highlights the effectiveness of the model in accurately annotating the remaining dataset, which is especially suitable for batch processing of large unlabelled corpora. PyTAIL will be open sourced and available at https://github.com/socialmediaie/pytail.

pdf bib
What should I Ask: A Knowledge-driven Approach for Follow-up Questions Generation in Conversational Surveys
Yubin Ge | Ziang Xiao | Jana Diesner | Heng Ji | Karrie Karahalios | Hari Sundaram
Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation

pdf bib
Examining the Causal Impact of First Names on Language Models: The Case of Social Commonsense Reasoning
Sullam Jeoung | Jana Diesner | Halil Kilicoglu
Proceedings of the 3rd Workshop on Trustworthy Natural Language Processing (TrustNLP 2023)

As language models continue to be integrated into applications of personal and societal relevance, ensuring these models’ trustworthiness is crucial, particularly with respect to producing consistent outputs regardless of sensitive attributes. Given that first names may serve as proxies for (intersectional) socio-demographic representations, it is imperative to examine the impact of first names on commonsense reasoning capabilities. In this paper, we study whether a model’s reasoning given a specific input differs based on the first names provided. Our underlying assumption is that the reasoning about Alice should not differ from the reasoning about James. We propose and implement a controlled experimental framework to measure the causal effect of first names on commonsense reasoning, enabling us to distinguish between model predictions due to chance and caused by actual factors of interest. Our results indicate that the frequency of first names has a direct effect on model prediction, with less frequent names yielding divergent predictions compared to more frequent names. To gain insights into the internal mechanisms of models that are contributing to these behaviors, we also conduct an in-depth explainable analysis. Overall, our findings suggest that to ensure model robustness, it is essential to augment datasets with more diverse first names during the configuration stage.

2022

pdf bib
What changed? Investigating Debiasing Methods using Causal Mediation Analysis
Sullam Jeoung | Jana Diesner
Proceedings of the 4th Workshop on Gender Bias in Natural Language Processing (GeBNLP)

Previous work has examined how debiasing language models affect downstream tasks, specifically, how debiasing techniques influence task performance and whether debiased models also make impartial predictions in downstream tasks or not. However, what we don’t understand well yet is why debiasing methods have varying impacts on downstream tasks and how debiasing techniques affect internal components of language models, i.e., neurons, layers, and attentions. In this paper, we decompose the internal mechanisms of debiasing language models with respect to gender by applying causal mediation analysis to understand the influence of debiasing methods on toxicity detection as a downstream task. Our findings suggest a need to test the effectiveness of debiasing methods with different bias metrics, and to focus on changes in the behavior of certain components of the models, e.g.,first two layers of language models, and attention heads.

2021

pdf bib
BACO: A Background Knowledge- and Content-Based Framework for Citing Sentence Generation
Yubin Ge | Ly Dinh | Xiaofeng Liu | Jinsong Su | Ziyao Lu | Ante Wang | Jana Diesner
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In this paper, we focus on the problem of citing sentence generation, which entails generating a short text to capture the salient information in a cited paper and the connection between the citing and cited paper. We present BACO, a BAckground knowledge- and COntent-based framework for citing sentence generation, which considers two types of information: (1) background knowledge by leveraging structural information from a citation network; and (2) content, which represents in-depth information about what to cite and why to cite. First, a citation network is encoded to provide background knowledge. Second, we apply salience estimation to identify what to cite by estimating the importance of sentences in the cited paper. During the decoding stage, both types of information are combined to facilitate the text generation, and then we conduct a joint training for the generator and citation function classification to make the model aware of why to cite. Our experimental results show that our framework outperforms comparative baselines.

2020

pdf bib
An Empirical Methodology for Detecting and Prioritizing Needs during Crisis Events
M. Janina Sarol | Ly Dinh | Rezvaneh Rezapour | Chieh-Li Chin | Pingjing Yang | Jana Diesner
Findings of the Association for Computational Linguistics: EMNLP 2020

In times of crisis, identifying essential needs is crucial to providing appropriate resources and services to affected entities. Social media platforms such as Twitter contain a vast amount of information about the general public’s needs. However, the sparsity of information and the amount of noisy content present a challenge for practitioners to effectively identify relevant information on these platforms. This study proposes two novel methods for two needs detection tasks: 1) extracting a list of needed resources, such as masks and ventilators, and 2) detecting sentences that specify who-needs-what resources (e.g., we need testing). We evaluate our methods on a set of tweets about the COVID-19 crisis. For extracting a list of needs, we compare our results against two official lists of resources, achieving 0.64 precision. For detecting who-needs-what sentences, we compared our results against a set of 1,000 annotated tweets and achieved a 0.68 F1-score.

pdf bib
Beyond Citations: Corpus-based Methods for Detecting the Impact of Research Outcomes on Society
Rezvaneh Rezapour | Jutta Bopp | Norman Fiedler | Diana Steffen | Andreas Witt | Jana Diesner
Proceedings of the Twelfth Language Resources and Evaluation Conference

This paper proposes, implements and evaluates a novel, corpus-based approach for identifying categories indicative of the impact of research via a deductive (top-down, from theory to data) and an inductive (bottom-up, from data to theory) approach. The resulting categorization schemes differ in substance. Research outcomes are typically assessed by using bibliometric methods, such as citation counts and patterns, or alternative metrics, such as references to research in the media. Shortcomings with these methods are their inability to identify impact of research beyond academia (bibliometrics) and considering text-based impact indicators beyond those that capture attention (altmetrics). We address these limitations by leveraging a mixed-methods approach for eliciting impact categories from experts, project personnel (deductive) and texts (inductive). Using these categories, we label a corpus of project reports per category schema, and apply supervised machine learning to infer these categories from project reports. The classification results show that we can predict deductively and inductively derived impact categories with 76.39% and 78.81% accuracy (F1-score), respectively. Our approach can complement solutions from bibliometrics and scientometrics for assessing the impact of research and studying the scope and types of advancements transferred from academia to society.

2019

pdf bib
REO-Relevance, Extraness, Omission: A Fine-grained Evaluation for Image Captioning
Ming Jiang | Junjie Hu | Qiuyuan Huang | Lei Zhang | Jana Diesner | Jianfeng Gao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Popular metrics used for evaluating image captioning systems, such as BLEU and CIDEr, provide a single score to gauge the system’s overall effectiveness. This score is often not informative enough to indicate what specific errors are made by a given system. In this study, we present a fine-grained evaluation method REO for automatically measuring the performance of image captioning systems. REO assesses the quality of captions from three perspectives: 1) Relevance to the ground truth, 2) Extraness of the content that is irrelevant to the ground truth, and 3) Omission of the elements in the images and human references. Experiments on three benchmark datasets demonstrate that our method achieves a higher consistency with human judgments and provides more intuitive evaluation results than alternative metrics.

pdf bib
TIGEr: Text-to-Image Grounding for Image Caption Evaluation
Ming Jiang | Qiuyuan Huang | Lei Zhang | Xin Wang | Pengchuan Zhang | Zhe Gan | Jana Diesner | Jianfeng Gao
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper presents a new metric called TIGEr for the automatic evaluation of image captioning systems. Popular metrics, such as BLEU and CIDEr, are based solely on text matching between reference captions and machine-generated captions, potentially leading to biased evaluations because references may not fully cover the image content and natural language is inherently ambiguous. Building upon a machine-learned text-image grounding model, TIGEr allows to evaluate caption quality not only based on how well a caption represents image content, but also on how well machine-generated captions match human-generated captions. Our empirical tests show that TIGEr has a higher consistency with human judgments than alternative existing metrics. We also comprehensively assess the metric’s effectiveness in caption evaluation by measuring the correlation between human judgments and metric scores.

pdf bib
A Constituency Parsing Tree based Method for Relation Extraction from Abstracts of Scholarly Publications
Ming Jiang | Jana Diesner
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

We present a simple, rule-based method for extracting entity networks from the abstracts of scientific literature. By taking advantage of selected syntactic features of constituent parsing trees, our method automatically extracts and constructs graphs in which nodes represent text-based entities (in this case, noun phrases) and their relationships (in this case, verb phrases or preposition phrases). We use two benchmark datasets for evaluation and compare with previously presented results for these data. Our evaluation results show that the proposed method leads to accuracy rates that are comparable to or exceed the results achieved with state-of-the-art, learning-based methods in several cases.

pdf bib
Enhancing the Measurement of Social Effects by Capturing Morality
Rezvaneh Rezapour | Saumil H. Shah | Jana Diesner
Proceedings of the Tenth Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

We investigate the relationship between basic principles of human morality and the expression of opinions in user-generated text data. We assume that people’s backgrounds, culture, and values are associated with their perceptions and expressions of everyday topics, and that people’s language use reflects these perceptions. While personal values and social effects are abstract and complex concepts, they have practical implications and are relevant for a wide range of NLP applications. To extract human values (in this paper, morality) and measure social effects (morality and stance), we empirically evaluate the usage of a morality lexicon that we expanded via a quality controlled, human in the loop process. As a result, we enhanced the Moral Foundations Dictionary in size (from 324 to 4,636 syntactically disambiguated entries) and scope. We used both lexica for feature-based and deep learning classification (SVM, RF, and LSTM) to test their usefulness for measuring social effects. We find that the enhancement of the original lexicon led to measurable improvements in prediction accuracy for the selected NLP tasks.

2017

pdf bib
Telling Apart Tweets Associated with Controversial versus Non-Controversial Topics
Aseel Addawood | Rezvaneh Rezapour | Omid Abdar | Jana Diesner
Proceedings of the Second Workshop on NLP and Computational Social Science

In this paper, we evaluate the predictability of tweets associated with controversial versus non-controversial topics. As a first step, we crowd-sourced the scoring of a predefined set of topics on a Likert scale from non-controversial to controversial. Our feature set entails and goes beyond sentiment features, e.g., by leveraging empathic language and other features that have been previously used but are new for this particular study. We find focusing on the structural characteristics of tweets to be beneficial for this task. Using a combination of emphatic, language-specific, and Twitter-specific features for supervised learning resulted in 87% accuracy (F1) for cross-validation of the training set and 63.4% accuracy when using the test set. Our analysis shows that features specific to Twitter or social media, in general, are more prevalent in tweets on controversial topics than in non-controversial ones. To test the premise of the paper, we conducted two additional sets of experiments, which led to mixed results. This finding will inform our future investigations into the relationship between language use on social media and the perceived controversiality of topics.

2016

pdf bib
Says Who…? Identification of Expert versus Layman Critics’ Reviews of Documentary Films
Ming Jiang | Jana Diesner
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

We extend classic review mining work by building a binary classifier that predicts whether a review of a documentary film was written by an expert or a layman with 90.70% accuracy (F1 score), and compare the characteristics of the predicted classes. A variety of standard lexical and syntactic features was used for this supervised learning task. Our results suggest that experts write comparatively lengthier and more detailed reviews that feature more complex grammar and a higher diversity in their vocabulary. Layman reviews are more subjective and contextualized in peoples’ everyday lives. Our error analysis shows that laymen are about twice as likely to be mistaken as experts than vice versa. We argue that the type of author might be a useful new feature for improving the accuracy of predicting the rating, helpfulness and authenticity of reviews. Finally, the outcomes of this work might help researchers and practitioners in the field of impact assessment to gain a more fine-grained understanding of the perception of different types of media consumers and reviewers of a topic, genre or information product.

pdf bib
Semi-supervised Named Entity Recognition in noisy-text
Shubhanshu Mishra | Jana Diesner
Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)

Many of the existing Named Entity Recognition (NER) solutions are built based on news corpus data with proper syntax. These solutions might not lead to highly accurate results when being applied to noisy, user generated data, e.g., tweets, which can feature sloppy spelling, concept drift, and limited contextualization of terms and concepts due to length constraints. The models described in this paper are based on linear chain conditional random fields (CRFs), use the BIEOU encoding scheme, and leverage random feature dropout for up-sampling the training data. The considered features include word clusters and pre-trained distributed word representations, updated gazetteer features, and global context predictions. The latter feature allows for ingesting the meaning of new or rare tokens into the system via unsupervised learning and for alleviating the need to learn lexicon based features, which usually tend to be high dimensional. In this paper, we report on the solution [ST] we submitted to the WNUT 2016 NER shared task. We also present an improvement over our original submission [SI], which we built by using semi-supervised learning on labelled training data and pre-trained resourced constructed from unlabelled tweet data. Our ST solution achieved an F1 score of 1.2% higher than the baseline (35.1% F1) for the task of extracting 10 entity types. The SI resulted in an increase of 8.2% in F1 score over the base-line (7.08% over ST). Finally, the SI model’s evaluation on the test data achieved a F1 score of 47.3% (~1.15% increase over the 2nd best submitted solution). Our experimental setup and results are available as a standalone twitter NER tool at https://github.com/napsternxg/TwitterNER.

2014

pdf bib
3arif: A Corpus of Modern Standard and Egyptian Arabic Tweets Annotated for Epistemic Modality Using Interactive Crowdsourcing
Rania Al-Sabbagh | Roxana Girju | Jana Diesner
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

pdf bib
Unsupervised Construction of a Lexicon and a Repository of Variation Patterns for Arabic Modal Multiword Expressions
Rania Al-Sabbagh | Roxana Girju | Jana Diesner
Proceedings of the 10th Workshop on Multiword Expressions (MWE)

pdf bib
Interactive Annotation for Event Modality in Modern Standard and Egyptian Arabic Tweets
Rania Al-Sabbagh | Roxana Girju | Jana Diesner
Proceedings of LAW VIII - The 8th Linguistic Annotation Workshop

2013

pdf bib
Using the Semantic-Syntactic Interface for Reliable Arabic Modality Annotation
Rania Al-Sabbagh | Jana Diesner | Roxana Girju
Proceedings of the Sixth International Joint Conference on Natural Language Processing